
Big Data Analytics & Spark

Slides by:
Joseph E. Gonzalez
jegonzal@cs.berkeley.edu

With revisions by:
Josh Hug & John DeNero

mailto:jegonzal@cs.berkeley.edu

Data in the Organization
A little bit of buzzword bingo!

Operational Data Store
Data Warehouse

ETL (Extract, Transform, Load)

OLAP (Online Analytics Processing)

Star Schema

Snowflake Schema

Data Lake

Schema on Read

Inventory

How we like to think of data in the organization

The reality…

InventorySales
(Asia)

Sales
(US) Advertising

Inventory

Sales
(Asia)

Sales
(US)

Advertising

Operational Data Stores
Ø Capture the now

Ø Many different databases across an
organization

Ø Mission critical… be careful!
Ø Serving live ongoing business operations
Ø Managing inventory

Ø Different formats (e.g., currency)
Ø Different schemas (acquisitions ...)

Ø Live systems often don’t maintain history

We would like a consolidated, clean,
historical snapshot of the data.

Inventory

Sales
(Asia)

Sales
(US)

Advertising

Data Warehouse

Data is periodically ETLed into the
data warehouse:

Ø Extracted from remote sources
Ø Transformed to standard schemas
Ø Loaded into the (typically)

relational (SQL) data system

ETL

ETL

ETL
ET

L

Collects and organizes
historical data from
multiple sources

Extract à Transform à Load (ETL)

Extract & Load: provides a snapshot of operational data
Ø Historical snapshot
Ø Data in a single system
Ø Isolates analytics queries (e.g., Deep Learning) from business

critical services (e.g., processing user purchase)
Ø Easy!

Transform: clean and prepare data for analytics in a unified
representation

Ø Difficult à often requires specialized code and tools
Ø Different schemas, encodings, granularities

Inventory

Sales
(Asia)

Sales
(US)

Advertising

Data Warehouse
ETL

ETL

ETL
ET

L

Collects and organizes
historical data from
multiple sources

How is data organized in
the Data Warehouse?

pname category price qty date day city state country

Corn Food 25 25 3/30/16 Wed. Omaha NE USA

Corn Food 25 8 3/31/16 Thu. Omaha NE USA

Corn Food 25 15 4/1/16 Fri. Omaha NE USA

Galaxy Phones 18 30 1/30/16 Wed. Omaha NE USA

Galaxy Phones 18 20 3/31/16 Thu. Omaha NE USA

Galaxy Phones 18 50 4/1/16 Fri. Omaha NE USA

Galaxy Phones 18 8 1/30/16 Wed. Omaha NE USA

Peanuts Food 2 45 3/31/16 Thu. Seoul Korea

Galaxy Phones 18 100 4/1/16 Fri. Seoul Korea

Example Sales Data

Ø Big table: many columns and rows
Ø Substantial redundancy à expensive to store

and access
Ø Make mistakes while updating

Ø Could we organize the data more
efficiently?

Multidimensional Data Model

pid timeid locid sales

11 1 1 25

11 2 1 8

11 3 1 15

12 1 1 30

12 2 1 20

12 3 1 50

12 1 1 8

13 2 1 10

13 3 1 10

11 1 2 35

11 2 2 22

11 3 2 10

12 1 2 26

12 2 2 45

Sales Fact Table
locid city state country

1 Omaha Nebraska USA

2 Seoul Korea

5 Richmond Virginia USA

pid pname category price

11 Corn Food 25

12 Galaxy 1 Phones 18

13 Peanuts Food 2

timeid Date Day

1 3/30/16 Wed.

2 3/31/16 Thu.

3 4/1/16 Fri.

Locations

Products

Time

Dimension
Tables

Time Id
1 2 3

25 8 15

30 20 50

8 10 10

25 8 15

30 20 50

8 10 10

25 8 15

30 20 50

8 10 10

11
12

13
1

2
5

Pr
od

uc
t I

d

Lo
catio

n Id
Ø Multidimensional “Cube”

of data

Multidimensional Data Model

pid timeid locid sales

11 1 1 25

11 2 1 8

11 3 1 15

12 1 1 30

12 2 1 20

12 3 1 50

12 1 1 8

13 2 1 10

13 3 1 10

11 1 2 35

11 2 2 22

11 3 2 10

12 1 2 26

12 2 2 45

Sales Fact Table
locid city state country

1 Omaha Nebraska USA

2 Seoul Korea

5 Richmond Virginia USA

pid pname category price

11 Corn Food 25

12 Galaxy 1 Phones 18

13 Peanuts Food 2

timeid Date Day

1 3/30/16 Wed.

2 3/31/16 Thu.

3 4/1/16 Fri.

Locations

Products

Time

Dimension
Tables

Ø Fact Table
Ø Minimizes redundant info
Ø Reduces data errors

Ø Dimensions
Ø Easy to manage and summarize
Ø Rename: Galaxy1 à Phablet

Ø Normalized Representation

Ø How do we do analysis?
Ø Joins!

The Star Schema

pid timeid locid sales
Sales Fact Table

locid city state country

pid pname category price timeid Date Day

Locations

Products Time

ß This looks like a star …

The Star Schema

ß This looks like a star …

The Star Schema

ß This looks like a star …

The Snowflake Schema

ß This looks like a snowflake …

See CS 186 for more!

Online Analytics Processing (OLAP)

Users interact with multidimensional data:

Ø Constructing ad-hoc and often complex SQL queries

Ø Using graphical tools that to construct queries

Ø Sharing views that summarize data across important
dimensions

Reporting and Business Intelligence (BI)
Ø Use high-level tools to interact with their data:

Ø Automatically generate SQL queries
Ø Queries can get big!

Ø Common!

Inventory

Sales
(Asia)

Sales
(US)

Advertising

Data Warehouse
ETL

ETL

ETL
ET

L

Collects and organizes
historical data from
multiple sources

So far …
Ø Star Schemas
Ø Data cubes
Ø OLAP

Sales
(Asia)

Sales
(US)

Data Warehouse
ETL
ETL

ETL

ETL

Collects and organizes
historical data from
multiple sources

Inventory

Advertising

Photos & Videos

It is Terrible!

ETL
 ?

Text/Log Data

Ø How do we deal with semi-
structured and unstructured
data?

Ø Do we really want to force a
schema on load?

Data Warehouse
Collects and organizes
historical data from
multiple sources

Ø How do we deal with semi-
structured and unstructured
data?

Ø Do we really want to force a
schema on load?

iid date_taken is_cat is_grumpy image_data

45123
1333

01-22-2016 1 1

47234
2122

06-17-2017 0 1

57182
7231

03-15-2009 0 0

23847
2733

05-18-2018 0 0

Unclear what a good schema for this image
data might look like. Something like above will
work, but it is inflexible!

Sales
(Asia)

Sales
(US)

ETL
ETL

ETL

ETL

Inventory

Advertising

Photos & Videos

It is Terrible!

ETL
 ?

Text/Log Data

Data Lake
Store a copy of all the data

Ø in one place

Ø in its original “natural” form

Enable data consumers to choose
how to transform and use data.

Ø Schema on Read

*Still being defined…[Buzzword Disclaimer]

*

What could go wrong?

The Dark Side of Data Lakes
Ø Cultural shift: Curate à Save Everything!

Ø Noise begins to dominate signal

Ø Limited data governance and planning
Example: hdfs://important/joseph_big_file3.csv_with_json

Ø What does it contain?
Ø When and who created it?

Ø No cleaning and verification à lots of dirty data

Ø New tools are more complex and old tools no longer work

Enter the data scientist

A Brighter Future for Data Lakes
Enter the data scientist

Ø Data scientists bring new skills
Ø Distributed data processing and cleaning
Ø Machine learning, computer vision, and statistical sampling

Ø Technologies are improving
Ø SQL over large files
Ø Self describing file formats (e.g. Parquet) & catalog managers

Ø Organizations are evolving
Ø Tracking data usage and file permissions
Ø New job title: data engineers

How do we store and compute on
large unstructured datasets
Ø Requirements:

Ø Handle very large files spanning multiple computers
Ø Use cheap commodity devices that fail frequently
Ø Distributed data processing quickly and easily

Ø Solutions:
Ø Distributed file systems à spread data over multiple machines

Ø Assume machine failure is common à redundancy
Ø Distributed computing à load and process files on multiple

machines concurrently
Ø Assume machine failure is common à redundancy
Ø Functional programming computational pattern à parallelism

Distributed File Systems
Storing very large files

Fault Tolerant Distributed File Systems

[Ghemawat et al., SOSP’03]

Big File
How do we store and access very
large files across cheap
commodity devices ?

Fault Tolerant Distributed File Systems

[Ghemawat et al., SOSP’03]

Big File

Machine1 Machine 2 Machine 3 Machine 4

Machine1 Machine 2 Machine 3 Machine 4

Fault Tolerant Distributed File Systems

[Ghemawat et al., SOSP’03]

Big FileB

C D

B

C D

B

C D

AAA Ø Split the file into smaller parts.
Ø How?

Ø Ideally at record
boundaries

Ø What if records are big?

Machine1 Machine 2 Machine 3 Machine 4

Fault Tolerant Distributed File Systems

[Ghemawat et al., SOSP’03]

Big File

C DC DC D

AAA

BBB

Machine1 Machine 2 Machine 3 Machine 4

Fault Tolerant Distributed File Systems

[Ghemawat et al., SOSP’03]

Big File

DDD

AAA BBB

CCC

Machine1 Machine 2 Machine 3 Machine 4

Fault Tolerant Distributed File Systems

[Ghemawat et al., SOSP’03]

Big File

DDD

AAA BBB C

C

C

Machine1 Machine 2 Machine 3 Machine 4

Fault Tolerant Distributed File Systems

[Ghemawat et al., SOSP’03]

Big File

AAA BBB C

C

C

DDD

Ø Split large files over multiple machines
Ø Easily support massive files spanning machines

Ø Read parts of file in parallel
Ø Fast reads of large files

Ø Often built using cheap commodity
storage devices

Big File

Fault Tolerant Distributed File Systems

Cheap commodity storage
devices will fail!

Machine 2

A B
C
Machine 4

A B
D

Machine 3

A C
D

Machine1

B C
D

Machine1 Machine 2 Machine 3 Machine 4

[Ghemawat et al., SOSP’03]

Big File

AAA BBB C

C

C

DDD

Fault Tolerant Distributed File Systems
Failure Event

Fault Tolerant Distributed File Systems
Failure Event

[Ghemawat et al., SOSP’03]

Big File

Machine 2 Machine 4

AA BB

C D

Machine 3

A C

D

Machine1

B C

D

Fault Tolerant Distributed File Systems
Failure Event

[Ghemawat et al., SOSP’03]

Big File

Machine 2 Machine 4

AA BB

C D

A

C

B

D

Fault Tolerant Distributed File Systems
Failure Event

[Ghemawat et al., SOSP’03]

Big File

Machine 2 Machine 4

AA BB

C D

A

C

B

D

Distributed Computing

In-Memory Dataflow System

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: cluster computing with working sets. HotCloud’10

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M.J. Franklin, S. Shenker, I. Stoica. Resilient Distributed Datasets: A Fault-Tolerant
Abstraction for In-Memory Cluster Computing, NSDI 2012

Developed at the UC Berkeley AMP Lab

Spark Programming Abstraction

Ø Write programs in terms of transformations on distributed
datasets

Ø Resilient Distributed Datasets (RDDs)
Ø Distributed collections of objects that can

stored in memory or on disk
Ø Built via parallel transformations (map, filter, …)
Ø Automatically rebuilt on device failure

Slide provided by M. Zaharia

Operations on RDDs

Ø Transformations f(RDD) => RDD
§ Lazy (not computed immediately)
§ E.g., “map”, “filter”, “groupBy”

Ø Actions:
§ Triggers computation
§ E.g. “count”, “collect”, “saveAsTextFile”

Example: Log Mining
Load error messages from a log into memory,
then interactively search for various patterns

Example: Log Mining
Load error messages from a log into memory,
then interactively search for various patterns

Worker

Worker

Worker

Driver

Example: Log Mining
Load error messages from a log into memory,
then interactively search for various patterns

lines = spark.textFile(“hdfs://file.txt”) Worker

Worker

Worker

Driver

Example: Log Mining
Load error messages from a log into memory,
then interactively search for various patterns

Base RDD
Worker

Worker

Worker

Driver

lines = spark.textFile(“hdfs://file.txt”)

Example: Log Mining
Load error messages from a log into memory,
then interactively search for various patterns

lines = spark.textFile(“hdfs://file.txt”)

errors = lines.filter(lambda s: s.startswith(“ERROR”))

Worker

Worker

Worker

Driver

Example: Log Mining
Load error messages from a log into memory,
then interactively search for various patterns

lines = spark.textFile(“hdfs://file.txt”)

errors = lines.filter(lambda s: s.startswith(“ERROR”))

Worker

Worker

Worker

Driver

Transformed RDD

Example: Log Mining
Load error messages from a log into memory,
then interactively search for various patterns

lines = spark.textFile(“hdfs://file.txt”)

errors = lines.filter(lambda s: s.startswith(“ERROR”))

messages = errors.map(lambda s: s.split(“\t”)[2])

messages.cache()

Worker

Worker

Worker

Driver

messages.filter(lambda s: “mysql” in s).count()

Example: Log Mining
Load error messages from a log into memory,
then interactively search for various patterns

lines = spark.textFile(“hdfs://file.txt”)

errors = lines.filter(lambda s: s.startswith(“ERROR”))

messages = errors.map(lambda s: s.split(“\t”)[2])

messages.cache()

Worker

Worker

Worker

Driver

messages.filter(lambda s: “mysql” in s).count()
Action

Example: Log Mining
Load error messages from a log into memory,
then interactively search for various patterns

lines = spark.textFile(“hdfs://file.txt”)

errors = lines.filter(lambda s: s.startswith(“ERROR”))

messages = errors.map(lambda s: s.split(“\t”)[2])

messages.cache()

Worker

Worker

Worker

Driver

messages.filter(lambda s: “mysql” in s).count()

Partition 1

Partition 2

Partition 3

Example: Log Mining
Load error messages from a log into memory,
then interactively search for various patterns

lines = spark.textFile(“hdfs://file.txt”)

errors = lines.filter(lambda s: s.startswith(“ERROR”))

messages = errors.map(lambda s: s.split(“\t”)[2])

messages.cache()

Worker

Worker

Worker
messages.filter(lambda s: “mysql” in s).count()

Driver tasks

tasks

tasks

Partition 1

Partition 2

Partition 3

Example: Log Mining
Load error messages from a log into memory,
then interactively search for various patterns

lines = spark.textFile(“hdfs://file.txt”)

errors = lines.filter(lambda s: s.startswith(“ERROR”))

messages = errors.map(lambda s: s.split(“\t”)[2])

messages.cache()

Worker

Worker

Worker
messages.filter(lambda s: “mysql” in s).count()

Driver

Read
HDFS
Partition

Read
HDFS
Partition

Read
HDFS
Partition

Partition 1

Partition 2

Partition 3

Example: Log Mining
Load error messages from a log into memory,
then interactively search for various patterns

lines = spark.textFile(“hdfs://file.txt”)

errors = lines.filter(lambda s: s.startswith(“ERROR”))

messages = errors.map(lambda s: s.split(“\t”)[2])

messages.cache()

Worker

Worker

Worker
messages.filter(lambda s: “mysql” in s).count()

Driver

Cache 1

Cache 2

Cache 3
Process
& Cache
Data

Process
& Cache
Data

Process
& Cache
Data

Partition 1

Partition 2

Partition 3

Example: Log Mining
Load error messages from a log into memory,
then interactively search for various patterns

lines = spark.textFile(“hdfs://file.txt”)

errors = lines.filter(lambda s: s.startswith(“ERROR”))

messages = errors.map(lambda s: s.split(“\t”)[2])

messages.cache()

Worker

Worker

Worker
messages.filter(lambda s: “mysql” in s).count()

Driver
results

results

results

Cache 1

Cache 2

Cache 3

Partition 1

Partition 2

Partition 3

Example: Log Mining
Load error messages from a log into memory,
then interactively search for various patterns

lines = spark.textFile(“hdfs://file.txt”)

errors = lines.filter(lambda s: s.startswith(“ERROR”))

messages = errors.map(lambda s: s.split(“\t”)[2])

messages.cache()

Worker

Worker

Worker
messages.filter(lambda s: “mysql” in s).count()

Driver

messages.filter(lambda s: “php” in s).count()

Cache 1

Cache 2

Cache 3

Partition 1

Partition 2

Partition 3

Example: Log Mining
Load error messages from a log into memory,
then interactively search for various patterns

lines = spark.textFile(“hdfs://file.txt”)

errors = lines.filter(lambda s: s.startswith(“ERROR”))

messages = errors.map(lambda s: s.split(“\t”)[2])

messages.cache()

Worker

Worker

Worker
messages.filter(lambda s: “mysql” in s).count()

messages.filter(lambda s: “php” in s).count()

tasks

tasks

tasks

Driver

Cache 1

Cache 2

Cache 3

Partition 1

Partition 2

Partition 3

Example: Log Mining
Load error messages from a log into memory,
then interactively search for various patterns

lines = spark.textFile(“hdfs://file.txt”)

errors = lines.filter(lambda s: s.startswith(“ERROR”))

messages = errors.map(lambda s: s.split(“\t”)[2])

messages.cache()

Worker

Worker

Worker
messages.filter(lambda s: “mysql” in s).count()

messages.filter(lambda s: “php” in s).count()

Driver

Process
from
Cache

Process
from
Cache

Process
from
Cache

Cache 1

Cache 2

Cache 3

Partition 1

Partition 2

Partition 3

Example: Log Mining
Load error messages from a log into memory,
then interactively search for various patterns

lines = spark.textFile(“hdfs://file.txt”)

errors = lines.filter(lambda s: s.startswith(“ERROR”))

messages = errors.map(lambda s: s.split(“\t”)[2])

messages.cache()

Worker

Worker

Worker
messages.filter(lambda s: “mysql” in s).count()

messages.filter(lambda s: “php” in s).count()

Driver
results

results

results

Cache 1

Cache 2

Cache 3

Partition 1

Partition 2

Partition 3

Example: Log Mining
Load error messages from a log into memory,
then interactively search for various patterns

lines = spark.textFile(“hdfs://file.txt”)

errors = lines.filter(lambda s: s.startswith(“ERROR”))

messages = errors.map(lambda s: s.split(“\t”)[2])

messages.cache()

Worker

Worker

Worker
messages.filter(lambda s: “mysql” in s).count()

messages.filter(lambda s: “php” in s).count()

Driver

Cache your data è Faster Results
Full-text search of Wikipedia
• 60GB on 20 EC2 machines
• 0.5 sec from mem vs. 20s for on-disk

Cache 1

Cache 2

Cache 3

Partition 1

Partition 2

Partition 3

Spark Demo

Summary (1/2)

Ø ETL is used to bring data from operational data stores into
a data warehouse.
Ø Many ways to organize tabular data warehouse, e.g. star and

snowflake schemas.

Ø Online Analytics Processing (OLAP) techniques let us
analyze data in data warehouse.

Ø Unstructured data is hard to store in a tabular format in a
way that is amenable to standard techniques, e.g.
finding pictures of cats.
Ø Resulting new paradigm: The Data Lake.

Summary (2/2)

Ø Data Lake is enabled by two key ideas:
Ø Distributed file storage.
Ø Distributed computation.

Ø Distributed file storage involves replication of data.
Ø Better speed and reliability, but more costly.

Ø Distributed computation made easier by map reduce.
Ø Hadoop: Open-source implementation of distributed file

storage and computation.
Ø Spark: Typically faster and easier to use than Hadoop.

