Big Data Analytics & Spark

Slides by: Joseph E. Gonzalez

jegonzal@cs.berkeley.edu

With revisions by: Josh Hug & John DeNero

Operational Data Store

Data Warehouse

ETL (Extract, Transform, Load)

Snowflake Schema

Schema on Read

Data in the Organization

A little bit of buzzword bingo!

Star Schema

OLAP (Online Analytics Processing)

Data Lake

Inventory

How we like to think of data in the organization

The reality...

Operational Data Stores

- > Capture the now
- Many different databases across an organization
- > Mission critical... be careful!
 - Serving live ongoing business operations
 - Managing inventory
- > Different formats (e.g., currency)
 - Different schemas (acquisitions ...)
- Live systems often don't maintain history

We would like a consolidated, clean, historical snapshot of the data.

Collects and organizes historical data from multiple sources

Data is periodically **ETL**ed into the data warehouse:

- Extracted from remote sources
- Transformed to standard schemas
- Loaded into the (typically) relational (SQL) data system

<u>**E**</u>xtract \rightarrow <u>**T**</u>ransform \rightarrow <u>**L**</u>oad (ETL)

Extract & Load: provides a snapshot of operational data

- Historical snapshot
- > Data in a single system
- Isolates analytics queries (e.g., Deep Learning) from business critical services (e.g., processing user purchase)
- ➤ Easy!

Transform: clean and prepare data for analytics in a unified representation

- \succ **Difficult** \rightarrow often requires specialized code and tools
- Different schemas, encodings, granularities

Collects and organizes historical data from multiple sources

How is data organized in the Data Warehouse?

Example Sales Data

 \succ

 \succ

	pname	category	price	qty	date	day	city	state	country
	Corn	Food	25	25	3/30/16	Wed.	Omaha	NE	USA
	Corn	Food	25	8	3/31/16	Thu.	Omaha	NE	USA
	Corn	Food	25	15	4/1/16	Fri.	Omaha	NE	USA
Bia	Galaxy table: m	Phones any colu	18 mns c	30 and ro	1/30/16 WS	Wed.	Omaha	NE	USA
	Substantial and acces	redundan s	$cy \rightarrow e$	expens	ive to store	Thu.	Omaha	NE	USA
	Make misto	akes while u	Jpdati	ng		Fri.	Omaha	NE	USA
Co effi	uld we or ciently?	ganize tł	ne do	ita ma	ore:0/16	Wed.	Omaha	NE	USA
	Peanuts	Food	2	45	3/31/16	Thu.	Seoul		Korea

Multidimensional Data Model

Sales Fact Table

pid	timeid	locid	sales
11	1	1	25
11	2	1	8
11	3	1	15
12	1	1	30
12	2	1	20
12	3	1	50
12	1	1	8
13	2	1	10
13	3	1	10
11	1	2	35
11	2	2	22
11	3	2	10
12	1	2	26

Locations

ocid	city	state	country
1	Omaha	Nebraska	USA
2	Seoul		Korea
5	Richmond	Virginia	USA

Products

pid	pname	category	price
11	Corn	Food	25
12	Galaxy 1	Phones	18
13	Peanuts	Food	2

Time

timeid	Date	Day
1	3/30/16	Wed.
2	3/31/16	Thu.
3	4/1/16	Fri.

Dimension Tables

Product Id 11 12 13

Multidimensional "Cube" LocotionId of data

8

30

25

10

20

8

2

Time Id

10

50

15

3

Multidimensional Data Model

Sales Fact Table

pid	timeid	locid	sales
11	1	1	25
11	2	1	8
11	3	1	15
12	1	1	30
12	2	1	20
12	3	1	50
12	1	1	8
13	2	1	10
13	3	1	10
11	1	2	35
11	2	2	22
11	3	2	10
12	1	2	26

Locations

ocid	city	state	country
1	Omaha	Nebraska	USA
2	Seoul		Korea
5	Richmond	Virginia	USA

Products

pid	pname	category	price
11	Corn	Food	25
12	Galaxy 1	Phones	18
13	Peanuts	Food	2

Time

timeid	Date	Day
1	3/30/16	Wed.
2	3/31/16	Thu.
3	4/1/16	Fri.

Dimension Tables

- Fact Table
 - Minimizes redundant info
 - Reduces data errors

Dimensions

- Easy to manage and summarize
- ▶ Rename: Galaxy1 → Phablet
- Normalized Representation
- How do we do analysis?
 - Joins!

The Star Schema

The Star Schema

The Star Schema

 \leftarrow This looks like a star ...

The Snowflake Schema

← This looks like a snowflake ...

See CS 186 for more!

Online Analytics Processing (OLAP)

Users interact with multidimensional data:

- Constructing ad-hoc and often complex SQL queries
- Using graphical tools that to construct queries
- Sharing views that summarize data across important dimensions

Reporting and Business Intelligence (BI)

- > Use high-level tools to interact with their data:
 - Automatically generate SQL queries
 - > Queries can get big!
- Common!

Collects and organizes historical data from multiple sources

<u>So far ...</u>

- Star Schemas
- Data cubes

> OLAP

Collects and organizes historical data from multiple sources

- How do we deal with semistructured and unstructured data?
- Do we really want to force a schema on load?

iid	date_taken	is_cat	is_grumpy	image_data	
45123 1333	01-22-2016	1	1		
47234 2122	06-17-2017	0	1		
57182 7231	03-15-2009	0	0		
23847 2733	05-18-2018	0	0	A CONTRACT OF A	

Collects and organizes historical data from multiple sources

How do we deal with semistructured and unstructured data?

Unclear what a good schema for this image data might look like. Something like above will work, but it is inflexible! Do we really want to force a schema on load?

Data Lake*

Store a copy of all the data

- ➢ in one place
- ➢ in its original "natural" form

Enable data consumers to choose how to transform and use data.

Schema on Read

What could go wrong?

*Still being defined...[Buzzword Disclaimer]

The Dark Side of Data Lakes

- Cultural shift: Curate -> Save Everything!
 Noise begins to dominate signal
- Limited data governance and planning
 Example: hdfs://important/joseph_big_file3.csv_with_json
 - > What does it contain?
 - > When and who created it?
- \succ No cleaning and verification \rightarrow lots of dirty data
- > New tools are more complex and old tools no longer work

Enter the data scientist

A Brighter Future for Data Lakes

Enter the data scientist

- > Data scientists bring new skills
 - Distributed data processing and cleaning
 - > Machine learning, computer vision, and statistical sampling

> Technologies are improving

- > SQL over large files
- > Self describing file formats (e.g. Parquet) & catalog managers
- > Organizations are evolving
 - Tracking data usage and file permissions
 - New job title: data engineers

How do we **store** and **compute** on large unstructured datasets

➢ Requirements:

- Handle very large files spanning multiple computers
- Use cheap commodity devices that fail frequently
- Distributed data processing quickly and easily
- \succ Solutions:
 - ▶ Distributed file systems → spread data over multiple machines
 ▶ Assume machine failure is common → redundancy
 - - ➤ Assume machine failure is common → redundancy
 - ➤ Functional programming computational pattern → parallelism

Distributed File Systems Storing very large files

Big File

How do we store and access very large files across cheap commodity devices ?

- Split the file into smaller parts.How?
 - > Ideally at record
 - boundaries
 - > What if records are big?

Machinel	Machine 2	Machine 3	Machine 4

- Split large files over multiple machines
 Easily support massive files spanning machines
- Read parts of file in parallel
 - Fast reads of large files
- Often built using cheap commodity storage devices

Cheap commodity storage devices will fail!

Distributed Computing

In-Memory Dataflow System Developed at the UC Berkeley AMP Lab

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: cluster computing with working sets. HotCloud'10

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M.J. Franklin, S. Shenker, I. Stoica. Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing, NSDI 2012

Spark Programming Abstraction

- Write programs in terms of transformations on distributed datasets
- Resilient Distributed Datasets (RDDs)
 - Distributed collections of objects that can stored in memory or on disk
 - Built via parallel transformations (map, filter, ...)
 - > Automatically rebuilt on device failure

Operations on RDDs

- Transformations f(RDD) => RDD
 - Lazy (not computed immediately)
 - E.g., "map", "filter", "groupBy"
- > Actions:
 - Triggers computation
 - E.g. "count", "collect", "saveAsTextFile"

Load error messages from a log into memory, then interactively search for various patterns

Load error messages from a log into memory, then interactively search for various patterns

Load error messages from a log into memory, then interactively search for various patterns

lines = spark.textFile("hdfs://file.txt")

Load error messages from a log into memory, then interactively search for various patterns Base RDD

lines = spark.textFile("hdfs://file.txt")

Load error messages from a log into memory, then interactively search for various patterns

lines = spark.textFile("hdfs://file.txt")

errors = lines.filter(lambda s: s.startswith("ERROR"))

Load error messages from a log into memory, then interactively search for various patterns Transformed RDD

lines = spark.textFile("hdfs://file.txt")

errors = lines.filter(lambda s: s.startswith("ERROR"))

Load error messages from a log into memory, then interactively search for various patterns

lines = spark.textFile("hdfs://file.txt")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t")[2])
messages.cache()

messages.filter(lambda s: "mysql" in s).count()

Driver

Load error messages from a log into memory, then interactively search for various patterns

lines = spark.textFile("hdfs://file.txt")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t")[2])
messages.cache()

messages.filter(lambda s: "mysql" in s).count()

Load error messages from a log into memory, then interactively search for various patterns

lines = spark.textFile("hdfs://file.txt")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t")[2])
messages.cache()

messages.filter(lambda s: "mysql" in s).count()

Driver

Load error messages from a log into memory, then interactively search for various patterns

Load error messages from a log into memory, then interactively search for various patterns

lines = spark.textFile("hdfs://file.txt")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t")[2]) Driver
messages.cache()

messages.filter(lambda s: "mysql" in s).count()

Worker

Load error messages from a log into memory, then interactively search for various patterns

lines = spark.textFile("hdfs://file.txt")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t")[2])
messages.cache()

messages.filter(lambda s: "mysql" in s).count()

Load error messages from a log into memory, then interactively search for various patterns

Load error messages from a log into memory, then interactively search for various patterns

lines = spark.textFile("hdfs://file.txt")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t")[2])
messages.cache()

messages.filter(lambda s: "mysql" in s).count()
messages.filter(lambda s: "php" in s).count()

Driver

Load error messages from a log into memory, then interactively search for various patterns

Load error messages from a log into memory, then interactively search for various patterns

lines = spark.textFile("hdfs://file.txt")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t")[2])
messages.cache()

messages.filter(lambda s: "mysql" in s).count()
messages.filter(lambda s: "php" in s).count()

Load error messages from a log into memory, then interactively search for various patterns

Load error messages from a log into memory, then interactively search for various patterns

lines = spark.textFile("hdfs://file.txt")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t")[2]) Driver
messages.cache()

messages.filter(lambda s: "mysql" in s).count()
messages.filter(lambda s: "php" in s).count()

Cache your data → Faster Results *Full-text search of Wikipedia*

- 60GB on 20 EC2 machines
- 0.5 sec from mem vs. 20s for on-disk

Cache 3 Worker Partition 3

Spark Demo

Summary (1/2)

- ETL is used to bring data from operational data stores into a data warehouse.
 - Many ways to organize tabular data warehouse, e.g. star and snowflake schemas.
- Online Analytics Processing (OLAP) techniques let us analyze data in data warehouse.
- Unstructured data is hard to store in a tabular format in a way that is amenable to standard techniques, e.g. finding pictures of cats.
 - Resulting new paradigm: The Data Lake.

Summary (2/2)

- > Data Lake is enabled by two key ideas:
 - \succ Distributed file storage.
 - > Distributed computation.
- > Distributed file storage involves replication of data.
 - \succ Better speed and reliability, but more costly.
- > Distributed computation made easier by map reduce.
 - Hadoop: Open-source implementation of distributed file storage and computation.
 - Spark: Typically faster and easier to use than Hadoop.