
DS 100/200: Principles and Techniques of Data Science Date: Feb 14, 2020

Discussion #4

Name:

Pandas: Grouping Multiple Columns

Throughout this section you’ll be working with the babynames (left) and elections (right)
datasets as shown below:

1. (a) Which of the following lines of code will output the following dataframe? Recall
that the arguments to pd.pivot table are as follows: data is the input dataframe,
index includes the values we use as rows, columns are the columns of the pivot
table, values are the values in the pivot table, and aggfunc is the aggregation
function that we use to aggregate values.

© A. pd.pivot table(data=winners only, index=’Party’, columns=’Result’,

values=’%’, aggfunc=np.mean)

© B. winners only.groupby([’Party’, ’Result’])[’%’].mean()

© C. pd.pivot table(data=winners only, index=’Result’, columns=’Party’,

values=’%’, aggfunc=np.mean)

© D. winners only.groupby(’%’)[[’Party’, ’Result’]].mean()

1

Discussion #4 2

(b) name counts since 1940 = babynames[babynames["Year"] >= 1940].groupby(["Name",

"Year"]).sum() generates the multi-indexed DataFrame below.

We can index into multi-indexed DataFrames using loc with slightly different syn-
tax. For example name counts since 1940.loc[("Aahna", 2008):("Aaiden",

2014)] yields the DataFrame below.

Using name counts since 1940, set imani 2013 count equal to the number of ba-
bies born with the name ‘Imani’ in the year 2013. You may use either ‘.loc‘. Make
sure you’re returning a value and not a Series or DataFrame.

imani 2013 count =

Pandas: String Operations and Table Joining

2. (a) Create a new DataFrame called elections with first name with a new column
‘First Name’ that is equal to the Candidate’s first name. Hint: Use .str.split.

elections with first name =

Discussion #4 3

(b) Now create elections and names by joining elections with first name with
name counts since 1940 numerical index (the modified version of
name counts since 1940 with the index reset) on both the first names of each
person along and the year.

elections and names =

Discussion #4 4

Regular Expressions

Here’s a complete list of metacharacters:

. ^ $ * + ? { } [] \ | ()

Some reminders on what each can do (this is not exhaustive):

"^" matches the position at the begin-
ning of string (unless used for negation
"[^]")

"$" matches the position at the end of
string character.

"?" match preceding literal or sub-
expression 0 or 1 times.

"+" match preceding literal or sub-
expression one or more times.

"*" match preceding literal or sub-
expression zero or more times

"." match any character except new line.

"[]" match any one of the characters in-
side, accepts a range, e.g., "[a-c]".

"()" used to create a sub-expression

"\d" match any digit character. "\D" is
the complement.

"\w" match any word character (letters,
digits, underscore). "\W" is the com-
plement.

"\s" match any whitespace character in-
cluding tabs and newlines. \S is the
complement.

"*?" Non-greedy version of *. Not fully
discussed in class.

"\b" match boundary between words. Not
discussed in class.

"+?" Non-greedy version of +. Not dis-
cussed in class.

Some useful re package functions:

re.split(pattern, string) split the
string at substrings that match the
pattern. Returns a list.

re.sub(pattern, replace, string)

apply the pattern to string re-

placing matching substrings with
replace. Returns a string.

re.findall(pattern, string) Returns
a list of all matches for the given
pattern in the string.

Discussion #4 5

Regular Expressions

3. For each pattern specify the starting and ending position of the first match in the string.
The index starts at zero and we are using closed intervals (both endpoints are included).

abcdefg abcs! ab abc abc, 123

abc* [0, 2]
[^\s]+
ab.*c

[a-z1,9]+

4. Given the text:

"<record > Joey Gonzalez <jegonzal@cs.berkeley.edu > Faculty </record >"

"<record > Manana Hakobyan <manana.hakobyan@berkeley.edu > TA </record >"

Which of the following matches exactly to the email addresses (including angle brackets)?
© A. <.*@.*> © B. <[^>]*@[^>]*> © C. <.*@\w+\..*>

5. Write a regular expression that matches strings that contain exactly 5 vowels.

6. Given that sometext is a string, use re.sub to replace all clusters of non-vowel characters
with a single period. For example "a big moon, between us..." would be changed
to "a.i.oo.e.ee.u.".

7. Given the following text in a variable log:

169.237.46.168 - - [26/ Jan /2014:10:47:58 -0800]

"GET /stat141/Winter04/ HTTP /1.1" 200 2585

"http :// anson.ucdavis.edu/courses/"

Discussion #4 6

Fill in the regular expression in the variable pattern below so that after it executes, day
is 26, month is Jan, and year is 2014.

pattern = ...

matches = re.findall(pattern , log)

day , month , year = matches [0]

Optional Regex Practice

8. Which strings contain a match for the following regular expression, "1+1$"? The char-
acter " " represents a single space.

© A. What is 1+1 © B. Make a wish at 11:11 © C. 111 Ways to Succeed

9. Write a regular expression that matches strings (including the empty string) that only
contain lowercase letters and numbers.

10. Given that address is a string, use re.sub to replace all vowels with a lowercase letter
“o”. For example "123 Orange Street" would be changed to "123 orongo Stroot".

Discussion #4 7

11. Given sometext = "I’ve got 10 eggs, 20 gooses, and 30 giants.", use re.findall
to extract all the items and quantities from the string. The result should look like [’10

eggs’, ’20 gooses’, ’30 giants’]. You may assume that a space separates quantity
and type, and that each item ends in s.

