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Data Visualization

“One picture worth ten thousand words.”

Frederick R. Barnard, Printer’s Ink, March 10th, 1927.
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An Oldie But Goodie

Figure 1: Minard’s representation of Napoleon’s 1812 Russian
Campaign. This graph, made in 1861 by Charles Joseph Minard
(1781–1870), is commonly regarded as one of the finest ever. It
represents, in only two dimensions, the size of the troops, their
location, their direction of movement, dates, and temperatures.
https://en.wikipedia.org/wiki/Charles_Joseph_Minard.
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New But ...

Figure 2: Bitcoin wealth distribution.
http://viz.wtf/image/166329900475.
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Data Visualization

One picture worth ten thousand words.

• Only if it is a good picture.

• We tend to be more demanding with text than with
graphics.

• How long does it take to write/read one thousand words?
At least the same effort should be put into
making/viewing a graph.
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Learning Objectives

• Become a wise and effective “creator”/“maker” as well as
“reader”/“viewer” of data visualization.

• Master general principles for data visualization and apply
these when making your own graphs as well as when
viewing others’.

• Produce the right graph for the matter at hand.

• Become aware of the variety of graphical techniques
available for different types of data and purposes and
understand their pros and cons.
Go beyond histograms and pie charts!

• Think more carefully about each plot you create, consider
the pros and cons of different choices, and try several
different plots for a given dataset.
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Learning Objectives

• Familiarize yourself with software for data visualization.
Most of the examples in theses slides are based on
Python’s matplotlib and seaborn libraries. However, as
discussed in the first lecture, other languages such a R
may be better suited for certain tasks.

• Focus on what type of plot to make rather than how to
make it, i.e., compose the plot conceptually before
thinking of its software implementation details.
Concepts are general and long-lasting, will syntax is highly
specific and ephemeral.

• Avoid bad graphs!
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Data Visualization

• Data visualization is a fundamental aspect of Data
Science.

• It is essential to “look at data” throughout the workflow,
from exploratory data analysis (EDA) to model diagnostics
and reporting the results of the inquiry.

• Visualization is valuable for detecting the main features
(good or bad) of a dataset, revealing patterns, and
suggesting theories or further questions.

• Visualization is also useful for quality/assessment control
(QA/QC) and detecting problems with the data.

• An effective plot can be good enough to answer the
question on its own. In some cases, it may even be the
only appropriate type of answer.

9 / 120



Data
Visualization

Dudoit

Motivation

Principles of
Data
Visualization

Do We Really
Need a Graph?

General
Considerations

Graphical
Perception

Bad Graphs

Survey of
Data
Visualization
Techniques

One
Quantitative
Variable

Multiple
Quantitative
Variables

One Qualitative
Variable

Multiple
Qualitative
Variables

Conditional
Plots

References

Data Visualization

• An effective plot can also be sufficient to convince
stakeholders of the findings from a full-blown statistical
inference procedure.
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Data Visualization

• Although data visualization is ubiquitous and heavily relied
upon, in research as well as in the media, typically not
much thought is put into creating or reading plots.

I Creators often rely on very limited subsets of plots and
without proper consideration of their limitations.

I Readers often passively absorb a message imposed on them
by the graph, rather than reason and think critically about
it.

• Very few Statistics, Computer Science (CS), or domain
curricula offer courses in data visualization.

• Proper data visualization is non trivial. Entire courses
could and should be devoted to data visualization,
including discussions of vision and perception to guide the
design of effective graphs.
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Do We Really Need a Graph?

• When the data only comprise a handful of values, a table
or a simple mention in text may be a more effective, i.e.,
accurate and simple, display.

• E.g. Percentage of popular vote for Trump and Clinton in
2016 presidential election:

Trump 46.1 %
Clinton 48.2 %

12 / 120
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Do We Really Need a Graph?

Trump

48.9%

Clinton

51.1%

Trump

46.1%

Clinton

48.2%

Others
5.7%

Figure 3: US Election Results 2016. Left: Pie chart of percentage of
popular vote for Trump and Clinton. Right: Pie chart of percentage
of popular vote for Trump, Clinton, and other candidates. Why the
different percentages on left and right?

13 / 120
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From Tables to Graphs

• When a table represents two or more variables, with more
than a handful of values each, a graph may be more
effective.

• Tables leave the interpretation to the viewer.

• Graphs provide a summary of the data and are more
amenable to comparisons.

• Gelman et al. (2002). Lets Practice What We Preach:
Turning Tables into Graphs. http://www.stat.columbia.

edu/~gelman/research/published/dodhia.pdf.
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From Tables to Graphs

Figure 4: Turning tables into graphs (Gelman et al., 2002, Figure 2).
Counts and rates of citations of various professions from the New
York Times database. Graph: Log-log scale allows comparison across
several orders of magnitude. Any 45◦ line indicates constant relative
frequency. The relative positions of the different professions is clearer.
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More Oldies But Goodies

Figure 5: Album de Statistique Graphique (1881).
https://www.davidrumsey.com/.
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More Oldies But Goodies: Maps

Figure 6: Album de Statistique Graphique (1881). Train load (scaled
by length of line) is represented by thickness of bands. How would
you represent this data without a graph?

17 / 120
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More Oldies But Goodies: Graphical Timetables

Figure 7: Marey (1885). Train schedule Paris–Lyon, 1880s.
https://www.edwardtufte.com/bboard/q-and-a-fetch-msg?

msg_id=0003zP. How would you represent this data without a
graph?
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More Oldies But Goodies: Graphical Timetables

Figure 8: Marey (1885). Train schedule Paris–Lyon with TGV, 1980s
vs. 1880s. The red line indicates the 1981 itinerary of the TGV, a
new express train that cut the trip from Paris to Lyon to under three
hours (vs. nine hours in the 1880s).
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More Oldies But Goodies: Graphical Timetables

Figure 9: Train schedule SF–Gilroy, now.
https://i.stack.imgur.com/qJ1hH.
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More Oldies But Goodies: Graphical Timetables

• In Marey (1885)’s Paris–Lyon graphical train schedule in
the 1880s, time is represented on the x axis and the
stations and distances between stations are represented on
the y axis (Tufte, 2001).

• A train’s itinerary is represented by a line.

• The slope of the line reflects the speed of the train: The
more nearly vertical the line, the faster the train.

• The length of a stop at a station is indicated by the length
of the horizontal line.

• The intersection of two lines locates the time and place
that trains going in opposite directions pass each other.

• This type of graph, known as a parallel coordinates plot, is
still used today and has many other applications.
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Caveats

• Graphs should attempt to summarize data in a simple,
intuitive, and efficient manner, without distorting or
loosing important information.

• However, not all good graphs are simple. As with text,
plots conveying a lot of information (e.g., displaying
multiple variables) require both a skillful creator and an
educated reader.
E.g. Minard’s graph for Napoleon’s Russia campaign, old
graphical train schedules.

• There is no “one-size-fits-all” graph, i.e., different types of
graphs should be used for different

I types of data, e.g., quantitative, qualitative variables;
I purposes, e.g., debugging code, EDA, reporting results;
I media, e.g., print journal, projector.
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Caveats

• Graphs typically reduce the information contained in the
data.
E.g. Histograms map n data points into B < n bins;
boxplots map n data points into 5 summary statistics (+
possibly outliers).

• By focusing on certain aspects of the data or even
imposing structure on data, graphs can also be subjective.
E.g. Choosing which variables to plot, decisions regarding
axes and scales, dendrogram representation of clusters1.

• As with text, the creator of the plot makes editorial
decisions as to which data to display and which aspects of
these data to show or emphasize.
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Caveats

• The reader should assess the relevance and reliability of
the data being displayed, as well as the appropriateness of
the graph.

• Software implicitly makes many decisions for the creator of
a plot, e.g., axes, scales, plotting symbols, color, ordering
of data. Experiment with different settings.

• Graphs are rarely presented on their own. They should be
interpreted in context of the text which they support. The
reader should examine the graph-text interface and, in
particular, whether the conclusions in the text are
supported by the graph.

1A dendrogram is a graphical representation of hierarchical clustering
results; for a given clustering of n objects, there are 2n−1 possible
dendrograms. The various choices made in hierarchical clustering as well as
the dendrogram representation impose (vs. reveal) structure on the data.
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Statistical Inference

• Graphs are by definition functions of the data, i.e.,
statistics.

• Although not typically viewed this way, visualization can
therefore be used as part of statistical inference.

• One can produce the same types of plots for a sample and
for a population, in that sense, the plot for the sample can
be viewed as an estimator of the plot for the population,
i.e., the parameter.

• A pattern that we detect from plotting data for a sample
can be used to infer properties of the population from
which the sample was drawn. A formalized special case of
such an approach is given by linear regression.
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General Considerations

In the process of creating a plot, you should consider the
following issues.

• Determine the purpose of the plot.
E.g. EDA, debugging code, comparing distributions,
model diagnostics, summarizing results, reporting results.

• Formulate the message.

• Identify the audience.

• Identify the display mode/medium (e.g., journal,
projector).

• Think about the best type of graph for the purpose,
message, audience, and display mode.

• Aim for efficient perception: Speed, accuracy, and
minimum cognitive load for understanding the message.
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General Considerations

• Apply visual perception principles.
E.g. Angles and areas are harder to perceive/compare
than lengths.

• Do not use more dimensions to represent the data than
are in the data. This rules out pie charts and barplots.

• An important consideration when selecting a graphical
technique is how easily it can be extended (e.g., to
multiple variables) and how amenable it is to comparing
distributions.

• Choose graphical parameters carefully: Aspect ratio,
plotting symbols, line types, texture, axes, etc.

27 / 120
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General Considerations

• Choose color palette carefully. E.g. Be mindful of color
blindness, use different color schemes for different types of
data and messages (e.g., sequential, qualitative, and
diverging).

• Provide sufficient information so that the plot can be
interpreted properly.
E.g. Title, axis parameters (i.e., label, tick marks),
annotation, legend, caption, etc.
In a document, number the figures and tables.

• Do not include irrelevant information, i.e., avoid “chart
junk”.

• Principle of “least surprise”: If you defy expectations,
people may get confused. Only defy expectations if it is
very important.
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General Considerations

• Experiment, i.e., consider different types of plots and
update the plots iteratively.

• Of course, always think about the quality of the data you
plot.
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General Considerations

• Sample size.
I For small sample sizes, plot all of the data – Why loose

information?
I For larger samples sizes, plot relevant summaries of the

data, that do not distort or loose important information in
the data.

• Variables to display/emphasize. Depends on the purpose
and message of the plot.

• Type of variables. Quantitative and qualitative variables
call for different types of graphical summaries.

• Pre-processing. E.g. Transformation (e.g., log),
dimensionality reduction, imputation.

30 / 120



Data
Visualization

Dudoit

Motivation

Principles of
Data
Visualization

Do We Really
Need a Graph?

General
Considerations

Graphical
Perception

Bad Graphs

Survey of
Data
Visualization
Techniques

One
Quantitative
Variable

Multiple
Quantitative
Variables

One Qualitative
Variable

Multiple
Qualitative
Variables

Conditional
Plots

References

Graphical Perception

• Cleveland and McGill (1985): “Graphical perception is the
visual decoding of the quantitative and qualitative
information encoded on graphs. Recent investigations have
uncovered basic principles of human graphical perception
that have important implications for the display of data.”

• When we create a graph, we encode the data as graphical
attributes.

• Possible graphical attributes are: Angles, areas, lengths,
position on common aligned/unaligned scale, slopes, color
properties.

• Effective graphs are those for which attributes are most
easily decoded.
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Graphical Perception

• There are empirical laws for perception that can be used
to rank different types of graphical encodings.

• In general, such laws relate the perceived (change in)
intensity in a physical stimulus to the actual (change in)
intensity. This concerns stimuli to all senses, i.e., vision,
hearing, taste, touch, and smell.
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Graphical Perception: Weber’s Law

• Weber’s Law is an empirical relationship in psychophysics
between the initial intensity in a stimulus (I ) and the
smallest perceivable difference (a.k.a., just noticeable
difference) in the stimulus intensity (∆I ):

∆I

I
= k , (1)

where k is a proportionality constant for a given type of
stimulus 2.

• In terms of length, this means we detect a 1 cm change in
a 1 m length as easily as we detect a 10 m change in a 1
km length.

• Weber’s Law appears to hold for many different graphical
encodings.

2Law formulated and published by Gustav Theodor Fechner
(1801–1887), a student of Ernst Heinrich Weber (1795–1878).
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Graphical Perception: Stevens’ Law

• Stevens (1957) Law is an empirical relationship in
psychophysics between the intensity in a stimulus and the
perceived magnitude of the sensation created by the
stimulus:

ψ(I ) = Ciβ, (2)

where I is the intensity or strength of the stimulus in
physical units (energy, weight, pressure, mixture
proportions, etc.), ψ(I ) is the magnitude of the sensation,
β is an exponent that depends on the type of stimulation
or sensory modality, and C is a proportionality constant
that depends on the units used.

• Examples of values for exponent, β
Length: 0.9 – 1.1
Area: 0.6 – 0.9
Volume: 0.5 – 0.8
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Graphical Perception: Stevens’ Law

• For lengths, the relationship is almost linear, thus our
perception is about right.

• However, according to this power law, our perception of
areas and volumes is conservative, i.e., when values are
represented as areas or volumes, we underestimate the
large values relative to the small ones and overestimate
the small ones relative to the large ones.

• E.g. Areas, with β = 0.7.
Consider two areas of size 1 and 2, respectively.

ψ(2)

ψ(1)
=

20.7

10.7
u 1.62.

Thus, we don’t see the bigger area as twice as large.
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Graphical Perception: Stevens’ Law

Now consider two areas of size 1/2 and 1, respectively.

ψ(1/2)

ψ(1)
=

0.50.7

10.7
u 0.62.

Thus, we don’t see the smaller area as half as large.
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Graphical Perception: Stevens’ Law
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Figure 10: Graphical perception: Steven’s Law. Stevens (1957)
perceived sensory magnitude power law.

37 / 120



Data
Visualization

Dudoit

Motivation

Principles of
Data
Visualization

Do We Really
Need a Graph?

General
Considerations

Graphical
Perception

Bad Graphs

Survey of
Data
Visualization
Techniques

One
Quantitative
Variable

Multiple
Quantitative
Variables

One Qualitative
Variable

Multiple
Qualitative
Variables

Conditional
Plots

References

Graphical Perception: Combining Weber’s and
Stevens’ Laws

• Consider comparing the values x and x + w , using length
(β = 1) and area (β = 0.7) encodings.

• For length, we perceive the relative value

x + w

x
= 1 +

w

x
.

• For area, we perceive the relative value

(x + w)0.7

x0.7
=

(
1 +

w

x

)0.7
u 1 +

0.7w

x
.

• Thus, we are more likely to detect small differences using
length encoding.
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Graphical Perception

• Cleveland and McGill (1985) carried out an extensive study
of graphical encodings to obtain a best to worst ranking.

• The encodings they examined include: position on a
common aligned scale, position on a common unaligned
scale, length, slope, angle, area, volume, color hue,
brightness, and purity.

• One of their experiments consisted of
I 7 graphical encodings,
I 3 judgments per encoding,
I 10 replications per subject,
I 127 experimental subjects.

Assessment criterion: error = ‖perceived p − true p‖,
where p denotes the ratio (in percentages) of the smaller
to the larger magnitude.
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Graphical Perception

Figure 11: Graphical perception. Based on Table 1 in Cleveland and
McGill (1985).
http://paldhous.github.io/ucb/2016/dataviz/week2.html.
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Bad Graphs

• The literature is full of “bad graphs”, that, for instance,
distort the data and are misleading, are too complicated,
or are missing essential information.

• Karl Broman’s Top Ten Worst Graphs (including one of
his own!): https://www.biostat.wisc.edu/~kbroman/

topten_worstgraphs/.

• Ross Ihaka’s Good and Bad Graphs: https://www.stat.

auckland.ac.nz/~ihaka/120/Lectures/lecture03.pdf.

• Edward Tufte: https://www.edwardtufte.com/bboard/

q-and-a-fetch-msg?msg_id=00040Z.

• Junk Charts:
https://junkcharts.typepad.com/junk_charts/.

• WTF Visualization: http://viz.wtf.
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Bad Graphs: Pie Charts

Figure 12: Top 10 Google salaries by job category: Pie chart.
https://junkcharts.typepad.com/junk_charts/2011/10/

the-massive-burden-of-pie-charts.html. What’s the
message? What do the angles represent? What’s a better graph?
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Bad Graphs: Pie Charts

Figure 13: Top 10 Google salaries by job category: Interval chart.
https://junkcharts.typepad.com/junk_charts/2011/10/

the-massive-burden-of-pie-charts.html.
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Bad Graphs: Pie Charts
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Figure 14: Top 10 Google salaries by job category: Interval chart.
Sorted by midpoint of salary range.
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Bad Graphs: Pie Charts
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Figure 15: Top 10 Google salaries by job category: Interval chart.
Sorted by salary range.

45 / 120



Data
Visualization

Dudoit

Motivation

Principles of
Data
Visualization

Do We Really
Need a Graph?

General
Considerations

Graphical
Perception

Bad Graphs

Survey of
Data
Visualization
Techniques

One
Quantitative
Variable

Multiple
Quantitative
Variables

One Qualitative
Variable

Multiple
Qualitative
Variables

Conditional
Plots

References

Bad Graphs: Pie Charts

Figure 16: Google Home query categories: Pie chart.
http://viz.wtf/image/171134950336. Unreadable. Can’t match
numbers to categories. What’s a better graph?
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Bad Graphs: Pie Charts

Figure 17: Bitcoin wealth distribution: Pie chart.
http://viz.wtf/image/166329900475. What’s the message?
How to compare shapes and areas? Without text, pie uninformative.
What’s a better graph?
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Bad Graphs: Pie Charts
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Figure 18: Bitcoin wealth distribution: Scatterplot.
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Bad Graphs: Multilevel Donut Charts

Figure 19: Goldman Sachs job listings: Multilevel donut chart.
https://s3.amazonaws.com/cbi-research-portal-uploads/

2017/09/18173935/GSteardownjobs. What’s the message?
Unreadable. What’s a better graph?
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Bad Graphs: Wordclouds
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Figure 20: State of the Union speeches 2010 and 2011: Wordcloud.
Frequency of words with at least 15 occurrences. What’s the
message? How to compare frequencies of words? What’s a better
graph?
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Bad Graphs: Wordclouds
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Figure 21: State of the Union speeches 2010 and 2011: Dotplot.
Frequency of words with at least 15 occurrences.
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Bad Graphs: Wordclouds

Figure 22: Gilets jaunes: Wordcloud. Frequency of expressions and
hashtags on Twitter for first four days of gilets jaunes movement.
How to compare frequencies between days?
https://www.lexpress.fr/actualite/societe/

gilets-jaunes-ce-qu-en-disent-les-francais_2055542.

html.
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Bad Graphs: Wordclouds

Figure 23: Names: Wordcloud.
https://www.wordclouds.com/?cloud=names.
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Bad Graphs: Wordclouds

Figure 24: Business words: Wordcloud.
https://www.wordclouds.com/?cloud=business
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Bad Graphs

• Chart junk. The previous graphs exemplify “chart junk” ,
i.e., they contain superfluous elements that are not
necessary to convey the information contained in the data,
but instead distract the viewer from this information or
even mask or distort important information.

• Pie charts.
I Frequency represented by angle/area.
I Angles and areas are hard to perceive and compare.
I Pie charts quickly become unreadable for more than a

handful of values.
I Listing the values is often better – they are actually often

added to a pie chart anyway!
I How to select order of categories?
I Not amenable to comparing distributions; side-by-side

comparisons not effective.
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Bad Graphs

I Hard to extend to multiple variables.
I A lot of junk often added to pie charts, e.g., thickness,

slice explosion.

• Wordclouds/tag clouds.
I Frequency represented by font size.
I Neither area nor height corresponds to frequency of words.
I How do longer words compare with shorter words?
I How are capital letters handled?
I How to calculate relative difference in frequency between

two words?
I How are the words ordered within the cloud (alphabetical,

frequency)?
I Not amenable to comparing distributions; side-by-side

comparisons not effective.
I How to extend to multiple variables?
I A lot of junk often added to word clouds.
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Bad Graphs

• Barcharts/barplots. Better.
I Based on length and position on common aligned scale.
I Add an irrelevant dimension (thickness of bar).
I How to select order of categories?
I Not readily amenable to comparisons.
I Extension to multiple variables problematic.

• Dotcharts/dotplots. (And interval charts.) Even better.
I Based on length and position on common aligned scale.
I Display only the relevant information.
I How to select order of categories?
I More amenable to comparisons and extensions to multiple

variables.
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Gapminder

Gapminder. (https://www.gapminder.org)

• We will use data from Gapminder to reason through the
process of data visualization, e.g., population, population
density, life expectancy, income for each country.

• Note that in this case we have a census, i.e., there is no
sampling involved 3.

• Gapminder is a Swedish foundation co-created in 2005 by
Hans Rosling (Professor of International Health at
Karolinska Institute) and family members.

• “Gapminder is a fact tank, not a think tank.”
“Gapminder measures ignorance about the world.”
“Gapminder makes global data easy to use and
understand.”
“Gapminder promotes Factfulness, a new way of thinking.”
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Gapminder

• Gapminder developed Trendalyzer, a data visualization
software providing dynamic and interactive graphics of
data compiled by organizations such as the United Nations
and the World Bank (acquired by Google in 2007).

3Some of the data could be estimates, but we won’t concern ourselves
with this at this point.

59 / 120



Data
Visualization

Dudoit

Motivation

Principles of
Data
Visualization

Do We Really
Need a Graph?

General
Considerations

Graphical
Perception

Bad Graphs

Survey of
Data
Visualization
Techniques

One
Quantitative
Variable

Multiple
Quantitative
Variables

One Qualitative
Variable

Multiple
Qualitative
Variables

Conditional
Plots

References

Gapminder

DATA SOURCES—INCOME: World Bank’s GDP per capita, PPP (2011 international $). Income of Syria & Cuba are Gapminder estimates. X-axis uses log-scale to make a doubling income show same distance on all levels. POPULATION: Data from UN Population Division. LIFE EXPECTANCY: IHME GBD-2015, as of Oct 2016.
ANIMATING GRAPH: Go to www.gapminder.org/tools to see how this graph changed historically and compare 500 other indicators. LICENSE: Our charts are freely available under Creative Commons Attribution License. Please copy, share, modify, integrate and even sell them, as long as you mention: ”Based on a free chart from www.gapminder.org”.
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Figure 25: Gapminder: World Poster 2015. “How Does Income
Relate to Life Expectancy? Short answer - Rich people live longer.”
Bubble chart with four variables displayed in 2D.
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Software

• Most of the plots below are produced with Python’s
seaborn library, using default arguments.

• Default settings typically do not correspond to the most
basic version of the plot, but rather impose many decisions
on the plot, e.g., color, legend, ordering. Experiment with
different settings to make sure you get the plot you want.

• Seaborn tutorial:
https://seaborn.pydata.org/tutorial.html.
Each function has many arguments to customize the plots.
As usual, consult documentation.

• Datasets available at:
https://github.com/mwaskom/seaborn-data.
E.g. Titanic survival dataset, Fisher’s iris dataset.
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One Quantitative Variable

How would you visualize life expectancy in 2018 over all
countries?

count 182.000000

mean 72.726374

std 7.237996

min 51.100000

25% 67.150000

50% 74.100000

75% 78.075000

max 84.200000
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Figure 26: Life expectancy, 2018.
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Stripplots
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Figure 27: Life expectancy, 2018. Right: Jittering, i.e., adding
random noise, to avoid overplotting.
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Figure 28: Life expectancy, 2018.
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Figure 29: Life expectancy, 2018. Different numbers of bins.
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Density Plots
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Figure 30: Life expectancy, 2018.
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Figure 31: Life expectancy, 2018. Different bandwidths.
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Figure 32: Life expectancy, 2018.
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One Quantitative Variable and One Qualitative
Variable

How would you visually compare life expectancy between
regions?
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Figure 33: Life expectancy by region, 2018.
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Figure 34: Life expectancy by region, 2018.
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Figure 35: Life expectancy by region, 2018.
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Figure 36: Life expectancy by region, 2018.
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Figure 37: Life expectancy by region, 2018.
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Figure 38: Income, 2018. Left: Income (GDP/capita,
inflation-adjusted $). Right: Log-transformed income.
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Time Series

How did life expectancy vary between 1800 and 2018?

77 / 120



Data
Visualization

Dudoit

Motivation

Principles of
Data
Visualization

Do We Really
Need a Graph?

General
Considerations

Graphical
Perception

Bad Graphs

Survey of
Data
Visualization
Techniques

One
Quantitative
Variable

Multiple
Quantitative
Variables

One Qualitative
Variable

Multiple
Qualitative
Variables

Conditional
Plots

References

Time Series

year

lif
e 

ex
pe

ct
an

cy

18
00

18
25

18
50

18
75

19
00

19
25

19
50

19
75

20
00

United States
Russia
China
Syria
Cambodia

Figure 39: Life expectancy over time for five countries.
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Figure 40: Life expectancy over time.
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One Quantitative Variable: Summary

Displaying and comparing marginal distributions for
quantitative data.

• Stem-and-leaf plots.
I Simple pen-and-paper method for visualizing the

distribution of all of a handful of values.
I Not amenable to comparisons between distributions.
I No reason to use these days.

• Stripcharts/Stripplots. (Sometimes referred to as
dotcharts/dotplots, related to rug plots.)

I Effective for visualizing the distribution of all of a
moderate number of values.

I Can use side-by-side stripplots to compare multiple
distributions.

• Histograms.
I Classical method for displaying a single distribution.
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One Quantitative Variable: Summary

I Sensitive to bin width and bin boundaries.
I Cannot easily display and compare multiple distributions.

• Density plots.
I Based on kernel density estimation (cf. smoothing).
I Sensitive to bandwidth, but methods available to select

bandwidth.
I Effective for displaying and comparing multiple

distributions.

• Boxplots. (A.k.a., box-and-whiskers plots.)
I Summarize distribution by only 5 numbers (+ outliers):

Median, upper and lower-quartiles, whiskers at 1.5 times
inter-quartile range (IQR) above and below upper and
lower-quartiles, respectively.

I Possible loss of information, e.g., multimodality.
I Effective for displaying and comparing multiple

distributions, especially with notches.
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One Quantitative Variable: Summary

• Violin plots.
I Trendy hybrids of boxplots and density plots.
I Redundant (twice the density plot!), unless plot different

densities on each side.
I Same limitations and issues as with boxplots and density

plots.
I Cannot compare densities as readily as with standard

density plots.
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Multiple Quantitative Variables

How would you visually examine the relationship between
life expectancy and income in 2018 over all countries?
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Figure 41: Life expectancy vs. income, 2018. Left: Income
(GDP/capita, inflation-adjusted $). Right: Log-transformed income.
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Figure 42: Life expectancy vs. income, colored by region, 2018.
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Figure 43: Life expectancy vs. income, colored by region and with
area of bubbles representing population, 2018.
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Figure 44: Life expectancy, 2018 vs. 1998.
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Figure 45: Life expectancy, population, population density, and
income, by region, 2018.
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Figure 46: RANDU RNG. Triples of successive numbers.
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Figure 47: RANDU RNG. Triples of successive numbers.
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RANDU RNG

RANDU random number generator. (R. Ihaka, https://www.
stat.auckland.ac.nz/~ihaka/120/Lectures/lecture27.pdf.)

• The dataset consists of 400 triples of successive numbers
produced by the RANDU random number generator
(RNG).

• The consecutive triples produced by RANDU are
constrained to lie on a series of parallel planes which cut
through the unit cube.

• The planes are not aligned with the sides of the unit cube
and so do not show up in any of the panels of a
scatterplot matrix.
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Figure 48: Simulated data, n = 60, 000: Scatterplot.
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Overplotting: Hexagonal Binning
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Figure 49: Simulated data, n = 60, 000: Hexagonal binning.
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Figure 50: Simulated data, n = 60, 000: Scatterplot smoothing.
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Multiple Quantitative Variables: Summary

Displaying joint distributions for quantitative data.

• While density plots and boxplots are useful for comparing
two or more marginal distributions (e.g., in terms of
location and scale), they do not provide any information
about joint distributions and, in particular, associations
between two variables.

• Scatterplots and scatterplot matrices.
I Useful for examining linear association between two

variables.
I Can extend beyond two variables by using color and

plotting symbol area, as in bubble charts.
I However, can miss important higher-dimensional patterns

(cf. RANDU example).

• Mean-difference plots.
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Multiple Quantitative Variables: Summary

I Rotated and scaled version of scatterplot.
I Better for looking at differences vs. associations.

• Bubble charts. A bubble chart is a type of scatterplot that
displays one or two extra dimensions using area and color.

• Parallel coordinates plots.
I Natural for visualizing time series data, i.e., same variable

measured across time.
Cf. Train schedules.

I Can also be used for visualizing the relationship between
multiple variables, but trickier: Each line corresponds to an
observation and each axis to a variable.

I Three important considerations, that can affect
interpretation of the plot: The order, the rotation, and the
scaling of the axes.
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Overplotting

Overplotting issues can be reduced by the following
approaches.

• Changing plotting symbol.

• Jittering, i.e., adding random noise.

• Smoothing.

• Hexagonal binning.
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Qualitative Variables

How would you visualize the 2017 UK election results?

Number of seats for each of 13 parties.

Party MPs

0 CON 318

1 LAB 261

2 SNP 35

3 LIB DEM 12

4 DUP 10

5 SF 7

6 PC 4

7 GREEN 1

8 IND 1

9 OTHER 1

10 UKIP 0

11 SDLP 0

12 UUP 0
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Pie Charts
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Figure 51: UK Election Results 2017. Number of seats for each of 13
parties.
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Figure 52: UK Election Results 2017. Number of seats for each of 13
parties.
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Dotplots
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Figure 53: UK Election Results 2017. Number of seats for each of 13
parties.
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Lollipop Plots
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Figure 54: UK Election Results 2017. Number of seats for each of 13
parties.
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One Qualitative Variable: Summary

• Pie charts.
I Frequency represented by angle/area.
I Angles and areas are hard to perceive and compare.
I Pie charts quickly become unreadable for more than a

handful of values.
I Listing the values is often better – they are actually often

added to a pie chart anyway!
I How to select order of categories?
I Not amenable to comparing distributions; side-by-side

comparisons not effective.
I Hard to extend to multiple variables.
I A lot of junk often added to pie charts, e.g., thickness,

slice explosion.

• Wordclouds/tag clouds.
I Frequency represented by font size.
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One Qualitative Variable: Summary

I Neither area nor height corresponds to frequency of words.
I How do longer words compare with shorter words?
I How are capital letters handled?
I How to calculate relative difference in frequency between

two words?
I How are the words ordered within the cloud (alphabetical,

frequency)?
I Not amenable to comparing distributions; side-by-side

comparisons not effective.
I How to extend to multiple variables?
I A lot of junk often added to word clouds.

• Barcharts/barplots.
I Based on length and position on common aligned scale.
I Add an irrelevant dimension (thickness of bar).
I How to select order of categories?
I Not readily amenable to comparisons.
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One Qualitative Variable: Summary

I Extension to multiple variables problematic.

• Dotcharts/dotplots. (And interval charts.)
I Based on length and position on common aligned scale.
I Display only the relevant information.
I How to select order of categories?
I More amenable to comparisons and extensions to multiple

variables.

• Lollipop plots.
I Similar to dotcharts/dotplots (with added stem) and

barcharts/barplots.
I Stem is redundant.
I How to select order of categories?
I Not readily amenable to comparisons.
I Extension to multiple variables problematic.
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Multiple Qualitative Variables

How would you display survival data on the Titanic
according to class, gender, and age?
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Figure 55: Titanic: Survival by class.
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Figure 56: Titanic: Survival by class.
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Figure 57: Titanic: Survival by gender/age.
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Figure 58: Titanic: Survival by class and gender/age.
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Figure 59: Titanic: Survival and class.
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Figure 60: Titanic: Survival, class, and gender/age.
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Multiple Qualitative Variables: Summary

The following types of plots are used to represent conditional
distributions for multiple categorical variables or counts for
hierarchical categories.

• Multilevel donut/pie/sunburst plots.
I Same or worse perception issues as with univariate pie

charts.
I Which variable to choose for “outer” layer?

• Barcharts/barplots.
I For two categorical variables, a barchart/barplot displays

the counts (or percentages) for each category of the
second variable within each category of the first variable.,
i.e., conditional distribution of second variable given first.

I Which variable to choose as “first”?
I In a side-by-side barplot, the frequencies for the second

variable are displayed as juxtaposed bars.
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Multiple Qualitative Variables: Summary

I In a stacked/segmented barplot, the bars for the second
variable are staked, so that their total height is the total
count for the category of the first variable or 100 percent.

I Hard to compare frequencies between categories of first
variable with both types of barplots.

I Hard to compare frequencies of second variable within
categories of first variable with stacked barplot.

I Circular barcharts/barplots: Eye-catching, but even harder
to compare frequencies.

• Treemap. The hierarchical or conditional frequencies are
represented using nested figures, usually rectangles.

• Mosaic plots.
I A mosaic plot is a graphical display of the counts in a

contingency table (a.k.a., cross-tabulation or crosstab),
where each cell is represented by a tile (i.e., rectangle)
whose area is proportional to the cell frequency.
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Multiple Qualitative Variables: Summary

I Color and shading of the tiles can be used to represent
unusually large or small counts, the sign and magnitude of
residuals (deviations) for particular models (e.g.,
independence).

I For two categorical variables, the width of each tile is
proportional to the marginal frequency of the category for
the first variable and the height of the tile to the
conditional frequency of the category for the second
variable given the first.

I Can be hard to read mosaic plots for more than two
variables.
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Conditional Plots

Conditional plots/coplots/faceting/panels/small multiples.

• Collection of plots, where each plot represents the
conditional distribution of one or more variables given a
conditioning variable.

• Each plot corresponds to a value or set of values for the
conditioning variable. For a quantitative conditioning
variable, the ranges are typically chosen so that there are
equal numbers of observations in each panel.

• The scales on the axes have to be the same for all panels.

• The colors (and legends) also have to be the same for all
panels.

• E.g. Scatterplots of life expectancy vs. income for each of
the six world regions.
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Figure 61: Life expectancy by region, 2018.
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Figure 62: Life expectancy by region conditioning on income, 2018.
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