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Example: mpg Dataset

• Suppose we are interested in understanding which features
of a car are related (to be made more precise) to its fuel
consumption, i.e., mileage per gallon (mpg).

• Addressing this rather vague question involves, among
other things, identifying relevant data, i.e., features of a
car (e.g., number of cylinders, horsepower), collecting
these data, and specifying the nature of the function
relating mpg to relevant features.

• Here, we start from an already available dataset, the mpg
dataset, which provides data on the following 9 variables
for a sample of 398 cars: “mpg”, “cylinders”,
“displacement”, “horsepower”, “weight”, “acceleration”,
“model year”, “origin”, “name”.
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Example: mpg Dataset

• The mpg dataset is available from the seaborn data
repository (https://github.com/mwaskom/seaborn-data)
and was originally provided on StatLib
(http://lib.stat.cmu.edu/datasets/cars.desc).

• We discard any observation with any NA and remove the
“name” variable, as it takes on over 300 different values
and does not appear useful for predicting mpg.

mpg cylinders displacement horsepower weight acceleration model year origin
18.00 8 307.00 130.00 3504 12.00 70 usa
15.00 8 350.00 165.00 3693 11.50 70 usa
18.00 8 318.00 150.00 3436 11.00 70 usa
16.00 8 304.00 150.00 3433 12.00 70 usa
17.00 8 302.00 140.00 3449 10.50 70 usa
15.00 8 429.00 198.00 4341 10.00 70 usa

. . .
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Example: mpg Dataset

• A natural and essential first step is exploratory data
analysis (EDA), for “getting a feel for the data”, identifying
patterns among the different variables, and detecting
potential problems with the data.

• There are two main types of variables, quantitative
variables (“mpg”, “cylinders”, “displacement”, “horsepower”,
“weight”, “acceleration”, “model year”) and qualitative
variables (“origin”, “name”), which may need to be handled
differently at different stages of the analysis, e.g.,
visualization, fitting the regression function relating mpg
to the other 7 features.
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Figure 1: mpg dataset. Marginal distributions of mpg and 7
covariates.
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Figure 2: mpg dataset. Distribution of mpg vs. each of 7 covariates.
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• Based on the above plots, it is clear that multiple features
of a car affect its mpg. For example, the mpg seems to
decrease as horsepower increases and increase with model
year.

• How can we use these data to find a function that relates
mpg to the other 7 variables?

• A natural function is the conditional mean of mpg given
the 7 variables. Such a function is known as a regression
function.

• In the regression context, mpg is referred to as an
outcome (a.k.a., dependent variable, response) and the
other 7 variables as covariates (a.k.a., independent
variables, explanatory variables).
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• We are immediately faced with the following issues.
I What is an appropriate model for the regression function?

There is an infinite number of functions of 7 variables.
Should we use all 7 variables? Should we consider
polynomial functions? If so, of what degree?

I The mpg dataset corresponds to a sample of cars from a
much larger population of cars (presumably, all cars in the
USA for a particular time period). How can we use the
sample to accurately infer the regression function for an
entire population of cars? This will depend on how the
sample was obtained, i.e., whether it was obtained
according to a well-defined sampling procedure.
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• Let Y denote the random variable (random variables are
defined precisely below) for mpg and X = (X1, . . . ,X7) the
random variables for the 7 other features (numbered in the
order “cylinders”, “displacement”, “horsepower”, “weight”,
“acceleration”, “model year”, “origin”). The data for the ith
car are (Xi ,Yi ), i = 1, . . . , n, n = 392.

• Below, we consider three different types of models for the
regression function, i.e., the conditional mean
ψ(X ) = E[Y |X ] of mpg given the 7 covariates.

• const: Model mpg as a constant.

E[Y |X ] = β0.

This model completely ignores the obvious association of
mpg with features such as horsepower.
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• hp: Model mpg as a linear1 function of horsepower.

E[Y |X ] = β0 + β4X4.

This model is more informative than the constant model,
but doesn’t account for the association of mpg with the
other 6 covariates or potential non-linear effects of
horsepower on mpg (cf. higher order polynomial).

• all: Model mpg as a linear function of all 7 covariates.

E[Y |X ] = β0 + β1X1 + β2X2 + β3X3

+β4X4 + β5X5 + β6X6

+β7,Japan I(X7 = Japan) + β7,USA I(X7 = USA).
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Note that we treat the qualitative variable “origin”
differently than the other 6 variables that are
quantitative2. This model accounts for all 7 covariates, but
could miss possible non-linear dependencies of mpg on the
7 features as well as interactions between these features.

• We will discuss how to fit these models, i.e., estimate the
regression parameters β of each model, in subsequent
lectures.

• For now, let’s examine the fitted values from each model,
i.e., the mpg values Ŷi from the estimated regression
function ψ̂(Xi ) (based on the estimated coefficients β̂)
evaluated for each car in the sample.
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• Residuals ei = Yi − Ŷi , which compare the observed
outcomes Yi to the fitted values Ŷi , can be used to assess
the fit of a model.

• A global goodness-of-fit measure is the mean squared error
(MSE), i.e., the average of the squared residuals

MSE =
1

n

n∑
i=1

(Yi − Ŷi )
2.

Small (large) MSE indicates that the fitted and observed
outcomes are similar (different).

1The expression “linear regression” typically refers to linearity in the
parameters β. Covariates X can enter the model via arbitrary functions,
e.g., polynomial, logarithm, sine functions.

2I() denotes the indicator function, equal to one if its argument is true
and zero otherwise
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Figure 3: mpg dataset. Empirical MSE for constant model
E[Y |X ] = β0: MSE =

∑
i (Yi − β0)2/n. Red line indicates average

mpg.
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Figure 4: mpg dataset. Linear regression of mpg on horsepower.
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Figure 5: mpg dataset. Residuals for three linear regression models.
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Table 1: mpg dataset. Empirical mean squared error for three
regression models.

Const HP All

60.76 23.94 10.68
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• A widely used approach for fitting regression models as
above is least squares estimation (LSE): The regression
parameters are estimated by minimizing MSE with respect
to (wrt) β.

• As we will see later, LSE is part of a general inference
framework which is based on risk optimization.

• Regression models are typically fit on data from a sample
drawn from a population. Important questions therefore
include assessing how well the sample-based estimated
regression function performs for the population, i.e.,
assessing the accuracy of the estimated regression
coefficients and the prediction error of the regression
function.
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• All of the above issues are part of statistical
inference/learning.
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Statistical Inference

• The first two and essential aspects of a data-enabled
inquiry are

I framing the question;
I identifying relevant data, i.e., what to measure.

• This often involves identifying a population of
observational units and the variables to measure on each
of these units.

• The answer to the question then takes the form of
numerical and graphical summaries (i.e., functions) of
these data, i.e., statistics.
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Statistical Inference

• However, most of the time one cannot collect data for the
entire population of interest. Instead, one obtains data for
a sample (i.e., subset) of observational units drawn from
this population. The sample is, in some sense, a proxy for
the population.

• This is where statistical inference/learning comes into play:
How to use the sample to infer/learn about the population.

• The sample should be representative of the population and
selected according to well-defined probabilistic procedures
to allow assessment of the accuracy of the answer, cf.
estimator bias and variance.

• With probability sampling one can assign a precise
probability to the event that each particular sample is
drawn from the population.
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Statistical Inference

• This allows us to quantify confidence about an estimator,
prediction, or hypothesis test.

• Probability Theory allows us to characterize randomness
and quantify uncertainty due to sampling.
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Box Model for Sampling

• A useful representation for sampling is a box model, where
the population of interest is represented by a box of N
tickets, each with values (i.e., variables) written on them.

• A sample is a subset of tickets drawn from the box and
the data are the values written on these tickets.

• A simple random sample (SRS) of size n is obtained by
drawing n tickets at random without replacement from
the box.

• For a small sample compared to the population, SRS is
very similar to sampling at random with replacement.

• As seen in a previous lecture, other forms of probability
sampling include cluster sampling and stratified sampling.
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Box Model for Sampling

…

X n

…

Figure 6: Box model. For an SRS, sample n tickets are random
without replacememt from the box.
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Box Model for Sampling

• Sampling at random without replacement. (SRS)
I How many ways are there so select a sample of size n from

a population of size N?(
N

n

)
=

N!

n!(N − n)!
.

I What is the chance that a particular element of the
population is selected? (

N−1
n−1

)(
N
n

) .

• Sampling at random with replacement.
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Box Model for Sampling

I How many ways are there so select a sample of size n from
a population of size N?

Nn.

I What is the chance that a particular element of the
population is selected?

1− (N − 1)n

Nn
.

• What is a box model for cluster sampling?

• What is a box model for stratified sampling?
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Statistical Inference

• The values in the population have a distribution (i.e.,
frequencies), which we refer to as population distribution
or data generating distribution.

• A parameter is a function of the values in the population,
i.e., of the data generating distribution.
E.g. Average of all values in the population.

• In the frequentist inference framework, parameters are
typically unknown fixed quantities to be estimated based
on data from a sample.

• In the Bayesian inference framework, parameters are
viewed as random and having distributions: A prior
distribution (before data are collected) and a posterior
distribution (conditional on the data collected).
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Statistical Inference

• The values in the sample have a distribution which we
refer to as data empirical distribution.

• An estimator is a function of the values in the sample, i.e.,
of the empirical distribution.
E.g. Average of all values in the sample.

• Estimators are typically known random variables, that is,
their values depend on which sample was drawn from the
population.

• In the frequentist setting, the sampling distribution of an
estimator refers to the different values it takes when
repeatedly randomly sampling from the population.
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Statistical Inference
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Figure 7: Box model and sampling distribution. Sampling distribution
of the proportion of “1”, p̂n, for n = 25 independent draws from a
Bernoulli(p = 3/4) data generating distribution (cf. repeatedly
flipping a biased coin 25 times).
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Statistical Inference

• A broad range of data-driven inquiries involve statistical
inference/learning, i.e., (part of) the question can be
framed into estimating or testing hypotheses about a
parameter of interest.

• One of the hardest and underestimated aspects of Applied
Statistics, as well as Data Science, is to translate, when
appropriate, a possibly vague domain question into a
statistical inference question, i.e., a parameter to be
estimated or for which to test hypotheses.

• Statistical inference/learning involves using the known
data empirical distribution to estimate parameters or test
hypotheses concerning the unknown data generating
distribution.
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Statistical Inference

• Statistical inference accounts for randomness/uncertainty
due to sampling and involves characterizing the sampling
distribution of an estimator of the parameter of interest.

• This includes assessing the bias and variance of an
estimator (see below) and the false positive/negative error
rates of a testing procedure.

• Optimal statistical inference, i.e., finding an optimal (cf.
risk minimization, below) estimator/predictor/test given
the question and data, comes at an intermediate stage of
the Data Science workflow, after data cleaning and
exploratory data analysis.
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Statistical Inference

• It is closely connected to previous steps, as the parameter
of interest is identified when framing the question and
EDA can suggest probabilistic models for the data
generating mechanism by revealing patterns in the data
and relationships between variables.

• EDA can also suggest a new parameter of interest,
reflecting the iterative nature of the workflow.
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Statistical Inference

Sample
Data empirical distn.

Estimator

θ̂n = Θ̂(Pn)
Known

Statistical
inference/learning

=⇒
Estimation

Hypothesis testing

Population
Data generating distn.

Parameter
θ = Θ(P)
Unknown

Parameter: Unknown object of interest corresponding to
domain question.

Estimator: Data-driven/educated guess at object of interest
and answer to domain question.
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Statistical Inference: Examples

• Election poll.
I In a typical poll, the population of interest is the set of all

voters in a particular state and a variable of interest is the
preferred candidate of each voter.

I The parameter of interest is the proportion (a mean of
binary indicators) of voters intending to vote for each
candidate.

I In practice, one cannot record voting preferences for the
entire population. Instead, one estimates the parameter of
interest based on voting preferences for a random sample
of voters (e.g., SRS, cluster sample).

• Observational case/control study.
I A typical case/control study concerns the identification of

variables (e.g., environmental exposure measures, gene
expression measures) associated with a particular disease.
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Statistical Inference: Examples

I The population of interest could be, for instance, the set of
all adults living in a particular region.

I A parameter of interest is the difference in means of an
exposure variable between the cases (individuals with
disease) and the controls (individuals without the disease).

I In practice, one cannot measure the variables of interest for
the entire population. Instead, one selects random samples
of cases and controls, possibly matched on a variety of
covariates (e.g., gender, race, age) to avoid confounding.

• A/B testing.
I In a typical A/B testing problem for conversion rate

optimization, the population of interest is a market
segment (e.g., members of a certain social network) and a
variable of interest is the response to a particular feature of
a website.
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Statistical Inference: Examples

I The parameter of interest is the (difference in) proportion
of viewers who turn into customers for each feature (A or
B) of the website.

I In practice, one cannot enroll the entire population in the
A/B testing trial. Instead, one estimates the parameter of
interest based on the responses of a random sample from
the market segment.

I Ideally, the sample is obtained using a randomized design,
where viewers are randomly assigned to either the A or B
treatment group.

• Regression.
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Statistical Inference: Examples

I Suppose one is interested in predicting rent for Berkeley
apartments. The population of interest is the set of all
rental apartments in Berkeley and variables of interest are
the rent, of course, but also features of an apartment such
as, square footage, number of bedrooms, number of
bathrooms, availability of washer/dryer.

I The overall mean rent of all apartments in Berkeley is not
a particularly informative parameter.

I A more interesting parameter is the regression function or
conditional mean of the rent given covariates such as
square footage, number of bedrooms, number of
bathrooms, availability of washer/dryer.

I In practice, one cannot readily collect data on all rental
apartments in Berkeley. Instead, one uses a sample of units
to estimate the regression function. This sample is
typically not a probability sample (e.g., Craigslist data),
thus making statistical inference problematic.
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Statistical Inference: Examples

What are box models for the above questions?
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Statistical Inference: Examples

…
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Figure 8: Box model: Observational case/control design.

40 / 135



Foundations
of Statistical

Inference

Dudoit

Motivation

Example: mpg
Dataset

Statistical Inference

Random
Variables and
Their
Distributions

Random Variables

Probability
Distributions

Joint, Conditional,
and Marginal
Distributions

Expected Values and
Variances

Covariances and
Correlations

Robust Statistics

Estimators
and Their
Sampling
Distributions

Definitions

Example: Binomial
Distribution

Statistical
Models

Loss Functions
and Risk

Definitions

Squared Error Loss
Function

Absolute Error Loss
Function

Huber Loss Function

Example: tips
Dataset

References

Statistical Inference: Examples

AAA B AAA B AAA B

AAA B AAA B

AAA B AAA B AAA B
AAA AAA AAA… …AAB

X nBX nA

Observe response to treatment A Observe response to treatment B

…

AAB AAB

Figure 9: Box model: Randomized design.
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Random Variables

• A random variable (RV) is a numerial function of a
probabilistic event/outcome.

• Random variables are typically real-valued scalars, discrete
(e.g., number of heads in ten coin flips) or continuous
(e.g., average height for a SRS of one hundred Berkeley
students), altough they can take on values in higher
dimensions (e.g., values of a stock over time, expression
measures for an entire genome).

• In what follows, we will focus mostly on discrete random
variables, altough metholology and theory are also
available for continuous variables as well as
higher-dimensional variables (i.e., random vectors).
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Random Variables

• We will denote random variables using upper-case letters
and realizations of these variables, i.e., the values they
take on, using lower-case letters.
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Probability Distributions

• The probability distribution of a random variable specifies
probabilities for the values it takes on.

• It is common to distinguish between distributions for
I discrete random variables, that take on a specified finite or

countable list of values,
I continuous random variables, that take on any numerical

value in an interval or collection of intervals.

However, there is theory that provides a unified treatment
of both cases.
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Probability Distributions

• The cumulative distribution function (CDF) of a random
variable X is defined as

FX (x) ≡ Pr(X ≤ x), ∀x ∈ R . (1)

The CDF is, by definition, non-decreasing,
right-continuous, and its range is [0, 1].

• One can show that, for any a, b ∈ R,

FX (b)− FX (a) = Pr(a < X ≤ b). (2)
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Probability Distributions

• For a discrete random variable X , the probability mass
function (PMF) provides the probability that X takes on
each of its possible values

fX (x) ≡

{
Pr(X = x), x ∈ X
0, otherwise

, (3)

where X denotes the support of X , i.e., the set of all
possible values of X .

• A PMF satisfies

0 ≤ fX (x) ≤ 1, ∀x ∈ X (4)∑
x∈X

fX (x) = 1.
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Probability Distributions

• The CDF of a discrete random variable is given by

FX (x) =
∑

{x ′∈X :x ′≤x}

fX (x ′). (5)

It is a step function, with steps of size fX (x) for each x in
the support of X .

• For a continuous random variable X , the probability
density function (PDF) is a non-negative continuous
function fX such that

FX (x) =

∫ x

−∞
fX (t)dt. (6)

Intuitively, one can think of fX (x)dx as the probability
that X falls within the infinitesimal interval [x , x + dx ].
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Probability Distributions

• The CDF of a continuous random variable is continuous.

• For a continuous random variable,

FX (b)− FX (a) = Pr(a < X ≤ b) =

∫ b

a
fX (x)dx , (7)

i.e., probabilities correspond to areas under the PDF.

• Distributions are indexed by parameters which are typically
unknown and to be inferred from data that ideally
correspond to a sample drawn from that distribution.
E.g. The (discrete) Binomial distribution has two
parameters, the number of Bernoulli trials (with binary
outcomes) n and the “success” probability of each trial p
(see below).
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Probability Distributions

E.g. The (continuous) Gaussian/normal distribution has
two parameters, the mean µ and the standard deviation σ
(see below).
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Gaussian Distribution

• The Gaussian or normal distribution is widely used for
real-valued continuous random variables due to its relative
simplicity and convenience, as well as probability
theoretical results.

• The Gaussian distribution has two parameters, the mean
µ ∈ R and the standard deviation σ ∈ R+, representing,
respectively, the center and spread of the distribution.

• A short-hand notation for this distribution is N(µ, σ).

• The N(µ, σ) PDF is given by

fN(x ;µ, σ) ≡ 1√
2πσ2

exp

(
−(x − µ)2

2σ2

)
, x ∈ R .

(8)
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Gaussian Distribution

• The Gaussian distribution has support on the entire real
line R and is symmetric about the origin.

• There is no closed-form expression for the CDF.

• The Gaussian/normal distribution N(0, 1) with zero mean
and unit standard deviation is referred to as the standard
Gaussian/normal distribution.

• One reason for the wide use of the Gaussian distribution is
the Central Limit Theorem, which states that the sum of a
large number of independent (defined below) random
variables is approximately normally distributed, regardless
of the distribution of the individual variables.
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Gaussian Distribution
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Figure 10: Gaussian distribution. Standard Gaussian N(0, 1) PDF
(left) and CDF (right).
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Gaussian Distribution
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Figure 11: Gaussian distribution. Left: N(µ, 1) PDF for
µ ∈ {0,−2, 3}. Right: N(0, σ) PDF for σ ∈ {1, 1/2, 2}.
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Binomial Distribution

• Consider flipping a biased coin independently n times and
denote by p the probability that the coin lands heads on
any given flip.

• Let Xi denote the binary indicator for the outcome of the
ith coin flip, equal to 1 if it lands heads (“success”) and 0
if it lands tails (“failure”).

• The Xi are n independent and identically distributed
Bernoulli(p) random variables with “success” probability p,
i.e., Pr(Xi = 1) = p.

• Let Yn denote the sum of the n random variables
{Xi : i = 1, . . . , n}, i.e., the total number of heads in the n
flips.
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Binomial Distribution

• Then, the support of Yn is Yn = {0, 1, . . . , n} and Yn has
a Binomial(n, p) distribution with PMF

fBin(y ; n, p) ≡
(

n

y

)
py (1− p)n−y , y ∈ Yn. (9)
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Binomial Distribution
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Figure 12: Binomial distribution. Binomial(20, 3/4) PMF (left) and
CDF (right). Red line indicates mean, np = 15.
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Figure 13: Binomial distribution. Left: Binomial(20, p) PMF for
p ∈ {1/2, 3/4, 1/10}. Right: Binomial(n, 1/2) CDF for
n ∈ {50, 20, 10}. Black continuous curve is N(np,

√
np(1− p)) CDF,

n = 50, p = 1/2.
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Joint, Conditional, and Marginal Distributions

• Distributions can be defined for multiple random variables.

• The joint distribution of two or more random variables
yields the probability that these random variables
simultaneously take on a specific set of values.

• For instance, for two discrete random variables X and Y ,
taking on values in X and Y, respectively, the joint
probability mass function is

fX ,Y (x , y) ≡ Pr(X = x ,Y = y), x ∈ X , y ∈ Y, (10)

and ∑
x∈X

∑
y∈Y

fX ,Y (x , y) = 1.
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Joint, Conditional, and Marginal Distributions

• The conditional PMF of Y given X = x is

fY |X=x(y) ≡ Pr(Y = y |X = x) (11)

=
Pr(X = x ,Y = y)

Pr(X = x)

=
fX ,Y (x , y)

fX (x)
.

The conditional PMF of X given Y = y is defined likewise.

• The distribution of each individual variable is referred to as
marginal distribution and can be obtained from the joint
distribution by adding over all possible values for the other
random variable

fX (x) =
∑
y∈Y

fX ,Y (x , y). (12)
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Joint, Conditional, and Marginal Distributions

• Two random variables are independent if knowing the
value of one variable does not affect the probability of the
other one taking on any of its possible values. That is,

fY |X=x(y) = fY (y), ∀x ∈ X , y ∈ Y.

• For independent random variables, the joint PMF is the
product of the marginal PMF

fX ,Y (x , y) = fX (x)fY (y). (13)

• Similar results are available for continuous random
variables, with PDF replacing PMF and integrals replacing
sums. In particular,

fX (x) =

∫
Y

fX ,Y (x , y)dy .
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Joint, Conditional, and Marginal Distributions:
Example

Rolling a fair and a loaded six-sided die.

• Example from http://prob140.org/textbook/chapters/

Chapter_04/02_Examples.

• Consider rolling (independently) one fair six-sided die and
one loaded six-sided die.

• Let X and Y denote, respectively, the number of spots
from one roll of the fair and loaded dice, respectively.

• Suppose the loaded die has the following distribution for
the number of spots.

Pr(Y = 1) = Pr(Y = 2) =
1

16

Pr(Y = 3) = Pr(Y = 4) =
3

16

Pr(Y = 5) = Pr(Y = 6) =
4

16
.
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Joint, Conditional, and Marginal Distributions:
Example

• Given the independence of the two rolls, the joint
distribution of X and Y is given by

pX ,Y (i , j) = Pr(X = i ,Y = j) = Pr(X = i) Pr(Y = j)

=
1

6
Pr(Y = j), ∀i , j ∈ {1, 2, . . . , 6}.

• The joint distribution can be displayed as a matrix, with
rows and columns corresponding, respectively, to the fair
and loaded dice and with elements equal to the joint PMF.
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Joint, Conditional, and Marginal Distributions:
Example

Table 2: Joint distribution of number of spots for one roll of a fair
six-sided die and one roll of a loaded six-sided die. Row and column
sums correspond, respectively, to the marginal distributions of the fair
and loaded dice.

Loaded die, Y
1 2 3 4 5 6

1 1
96

1
96

3
96

3
96

4
96

4
96

1
6

2 1
96

1
96

3
96

3
96

4
96

4
96

1
6

Fair die, X 3 1
96

1
96

3
96

3
96

4
96

4
96

1
6

4 1
96

1
96

3
96

3
96

4
96

4
96

1
6

5 1
96

1
96

3
96

3
96

4
96

4
96

1
6

6 1
96

1
96

3
96

3
96

4
96

4
96

1
6

1
16

1
16

3
16

3
16

4
16

4
16
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Joint, Conditional, and Marginal Distributions:
Example

• The chance that we roll the same number for both dice is

Pr(X = Y ) =
6∑

i=1

Pr(X = Y = i)

=
6∑

i=1

Pr(X = i) Pr(Y = i)

=
1

6

6∑
i=1

Pr(Y = i) =
1

6
.
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Joint, Conditional, and Marginal Distributions:
Example

• The chance that the number on the loaded die exceeds the
number on the fair die by more than 2 is

Pr(Y − X > 2) =
3∑

i=1

6∑
j=i+3

pX ,Y (i , j)

=
23

96
.

Loaded die, Y
1 2 3 4 5 6

1 1
96

1
96

3
96

3
96

4
96

4
96

2 1
96

1
96

3
96

3
96

4
96

4
96

Fair die, X 3 1
96

1
96

3
96

3
96

4
96

4
96

4 1
96

1
96

3
96

3
96

4
96

4
96

5 1
96

1
96

3
96

3
96

4
96

4
96

6 1
96

1
96

3
96

3
96

4
96

4
96
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Joint, Conditional, and Marginal Distributions:
Example

• The chance that the numbers on the two dice differ by no
more than 1 is

Pr(|X − Y | ≤ 1) =
2∑

j=1

pX ,Y (1, j) +
5∑

i=2

i+1∑
j=i−1

pX ,Y (i , j)

+
6∑

j=5

pX ,Y (6, j)

=
43

96
.

Loaded die, Y
1 2 3 4 5 6

1 1
96

1
96

3
96

3
96

4
96

4
96

2 1
96

1
96

3
96

3
96

4
96

4
96

Fair die, X 3 1
96

1
96

3
96

3
96

4
96

4
96

4 1
96

1
96

3
96

3
96

4
96

4
96

5 1
96

1
96

3
96

3
96

4
96

4
96

6 1
96

1
96

3
96

3
96

4
96

4
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Joint, Conditional, and Marginal Distributions:
Example

• The chance that the sum of the numbers on the two dice
is 7 is

Pr(X + Y = 7) =
1

6

6∑
i=1

Pr(Y = 7− i)

=
1

6
.

Loaded die, Y
1 2 3 4 5 6

1 1
96

1
96

3
96

3
96

4
96

4
96

2 1
96

1
96

3
96

3
96

4
96

4
96

Fair die, X 3 1
96

1
96

3
96

3
96

4
96

4
96

4 1
96

1
96

3
96

3
96

4
96

4
96

5 1
96

1
96

3
96

3
96

4
96

4
96

6 1
96

1
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3
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3
96

4
96

4
96
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Joint, Conditional, and Marginal Distributions:
Example

• The conditional probability that the number on the loaded
die is 4 given that the sum of the numbers is 7 is

Pr(Y = 4|X + Y = 7) =
Pr(X + Y = 7,Y = 4)

Pr(X + Y = 7)

=
Pr(X = 3,Y = 4)

Pr(X + Y = 7)

=
Pr(X = 3) Pr(Y = 4)

Pr(X + Y = 7)

=
1
6

3
16
1
6

=
3

16
.
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Expected Values

• Two useful summaries/parameters of the distribution of a
random variable are its expected value and its variance,
which pertain, respectively, to its average/center/location
and spread/scale.

• The expected value (in short, expectation) or mean value
(in short, mean) of a discrete random variable X with
PMF fX is defined as

E[X ] ≡
∑
x∈X

x fX (x). (14)

For a continuous random variable with PDF fX ,

E[X ] ≡
∫
X

xfX (x)dx . (15)
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Expected Values

• E.g. For the example with the fair and loaded six-sided
dice

E[X ] =
6∑

x=1

x
1

6
=

1

6

6∑
i=1

x

=
1

6

7× 6

2
=

7

2
= 3.5

and

E[Y ] = 1× 1

16
+ 2× 1

16
+ 3× 3

16

+ 4× 3

16
+ 5× 4

16
+ 6× 4

16

=
17

4
= 4.25.
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Expected Values

• Expected values satisfy a linearity property, in the sense
that for two (possibly dependent) random variables X and
Y and a constant c ∈ R

E[X + Y ] = E[X ] + E[Y ] (16)

E[cX ] = c E[X ].

• For two independent random variables X and Y ,

E[XY ] = E[X ] E[Y ]. (17)

Note that this does not hold in general for dependent
variables.
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Variances

• The variance of a random variable X is its mean squared
deviation from its mean

Var[X ] ≡ E[(X − E[X ])2]. (18)

• The square root of the variance is the standard deviation
(SD).

• It can easily be shown that

Var[X ] = E[X 2]− (E[X ])2. (19)

• For any two constants a, b ∈ R

Var[aX + b] = a2 Var[X ]. (20)

72 / 135



Foundations
of Statistical

Inference

Dudoit

Motivation

Example: mpg
Dataset

Statistical Inference

Random
Variables and
Their
Distributions

Random Variables

Probability
Distributions

Joint, Conditional,
and Marginal
Distributions

Expected Values and
Variances

Covariances and
Correlations

Robust Statistics

Estimators
and Their
Sampling
Distributions

Definitions

Example: Binomial
Distribution

Statistical
Models

Loss Functions
and Risk

Definitions

Squared Error Loss
Function

Absolute Error Loss
Function

Huber Loss Function

Example: tips
Dataset

References

Variances

• For two independent random variables X and Y ,

Var[X + Y ] = Var[X ] + Var[Y ]. (21)

Unlike with expectations, this linearity property does not
hold in general for dependent variables.
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Covariances and Correlations

• The covariance of two random variables X and Y is
defined as

Cov[X ,Y ] ≡ E[(X − E[X ])(Y − E[Y ])]. (22)

• When X = Y , the covariance reduces to the variance

Cov[X ,X ] = Var[X ].

• It can easily be shown that

Cov[X ,Y ] = E[XY ]− E[X ] E[Y ]. (23)

• When X and Y are independent

Cov[X ,Y ] = 0. (24)
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Covariances and Correlations

• For any two random variables X and Y (dependent or not)

Var[X + Y ] = Var[X ] + Var[Y ] + 2 Cov[X ,Y ]. (25)

• While variances are non-negative, covariances can be
negative.

• Covariances are used to measure the linear association or
correlation between two random variables and the sign of
the covariance reflects whether they are positively or
negatively correlated.

• The Pearson correlation coefficient between X and Y is
their covariance scaled by the square root of their variances

Cor[X ,Y ] ≡ Cov[X ,Y ]√
Var[X ] Var[Y ]

. (26)
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Covariances and Correlations

• It can be shown that

−1 ≤ Cor[X ,Y ] ≤ 1. (27)

• Interpretation.
I A correlation of 1 corresponds to a perfect linear

relationship between X and Y , where Y increases as X
increases: Y = aX + b, with a > 0.

I A correlation of -1 corresponds to a perfect linear
relationship between X and Y , where Y decreases as X
increases: Y = aX + b, with a < 0.

I A correlation of 0 implies that there is no linear relationship
between X and Y (but possibly a non-linear relationship).
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Covariances and Correlations
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Figure 14: Correlation coefficient. First 3 panels: X and Y have same
N(0, 1) distributions, but different correlation coefficients.
Bottom-right panel: Y = X 2, but Cor[X ,Y ] = 0.
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Correlation, Association/Dependence, and
Causation

• Uncorrelation does not imply independence.
E.g. Consider X ∼ N(0, 1) and Y = X 2. Then,
Cor[X ,Y ] = 0, but X and Y are clearly dependent.

• Association/dependence does not imply causation.
If two random variables are dependent this does not imply
that changes in the value of one cause the other to change.

• The association between two random variables could be
due to a confounding variable, i.e., a third variable that
influences both variables.
E.g. Association between murder rate and sale of ice
cream, with weather as confounding variable.

• Causation is in general much harder to establish than
association and typically requires the use of randomized
controlled experiments (vs. observational studies).
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Correlation, Association/Dependence, and
Causation

• Causation does not imply correlation, as the correlation
coefficient is only a measure of linear association between
two random variables.
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Robust Statistics

• Means, variances, and covariances can be sensitive to
outliers, i.e., observations that are distant from most of
the other observations.

• By contrast, rank-based statistics, such as the median, i.e.,
the 50th percentile, are more robust to outliers.

• E.g. Consider two sets of numbers X = {1, 2, . . . , 10, 11}
and Y = {1, 2, . . . , 10, 110}, identical except for one value.
Then, the means of X and Y are 6 and 15, respectively,
while the median is 6 for both datasets.
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Robust Statistics

• The median Median[X ] of a random variable X is any
number m such that

Pr(X ≤ m) ≥ 1

2
and Pr(X ≥ m) ≥ 1

2
. (28)

Alternately,

FX (m) ≥ 1

2
and FX (m−) ≤ 1

2
.

For a continuous random variable with CDF FX

FX (m) = Pr(X ≤ m) = Pr(X ≥ m) =
1

2
.
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Robust Statistics

• A robust measure of the variability of a distribution (to be
used in place of the standard deviation) is the median
absolute deviation (MAD)

MAD[X ] ≡ Median[|X −Median[X ]|]. (29)

• E.g. The SDs of X and Y are 3.32 and 31.64, respectively,
while the MAD is 4.45 for both datasets.
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Notation

• When needed, we may use a subscript to indicate the
distribution with respect to which an expected value,
variance, covariance, correlation, or median is computed.

• For instance, EP [X ] and EPn [X ] refer, respectively, to a
population and an empirical/sample mean.
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Estimators and Their Sampling Distributions

• In the context of statistical inference/learning, one seeks
to infer/learn a population parameter θ = Θ(P) based on
data from a random sample from the population of
interest.

• E.g. In regression, the parameter of interest is the
regression function for the population, i.e., the conditional
mean EP [Y |X ] of an outcome Y given covariates X ,
where the expected value is computed with respect to the
unknown data generating distribution P.

• A random sample of size n can be represented by n
random variables {Xi : i = 1, . . . , n}. These are the data.
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Estimators and Their Sampling Distributions

• When sampling at random with replacement from a
population, the random variables are independent and
identically distributed (IID), with distribution the data
generating distribution P. That is, Xi ∼ P.

• For a given sample, the data empirical distribution is the
discrete distribution Pn that places probability 1/n on each
Xi .

• An estimator θ̂n is a function of the data, i.e., a function
of {Xi : i = 1, . . . , n} or, equivalently, Pn: θ̂n = Θ̂(Pn).

• An estimator is therefore a random variable.

• In frequentist inference, the sampling distribution of an
estimator refers to its distribution over repeated random
samples from the population.
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Estimators and Their Sampling Distributions

• Useful parameters of the sampling distribution of an
estimator, that can be used to assess its performance, are
related to its expected value and its variance, computed
with respect to the data generating distribution P.

• The bias of an estimator θ̂n of the parameter θ is the
difference between its expected value and θ

BiasP [θ̂n] ≡ EP [θ̂n]− θ. (30)

• The estimator is said to be unbiased if its expected value
is equal to the parameter it seeks to estimate, i.e., if
BiasP [θ̂n] = 0.
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Estimators and Their Sampling Distributions

• The standard error (SE) of an estimator is the square root
of its variance, i.e., its standard deviation.

SEP [θ̂n] ≡
√

VarP [θ̂n]. (31)

• The mean squared error (MSE) of an estimator θ̂n of the
parameter θ is the expected value of its squared difference
with θ

MSEP [θ̂n] ≡ EP [(θ̂n − θ)2]. (32)
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Estimators and Their Sampling Distributions

• One can show that the MSE is the sum of the variance
and of the square of the bias

MSE[θ̂n] = Var[θ̂n] + (Bias[θ̂n])2. (33)

This result holds for expected values computed with
respect to any distribution (we therefore did not use a
subscript for the distribution).
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Estimators and Their Sampling Distributions

Proof.

MSE[θ̂n] = E[(θ̂n − θ)2]

= E[(θ̂n − E[θ̂n] + E[θ̂n]− θ)2]

= E[(θ̂n − E[θ̂n])2 + 2(θ̂n − E[θ̂n])(E[θ̂n]− θ)

+(E[θ̂n]− θ)2]

= E[(θ̂n − E[θ̂n])2] + 2(E[θ̂n]− θ) E[(θ̂n − E[θ̂n])]

+ E[(E[θ̂n]− θ)2]

= Var[θ̂n] + 2(E[θ̂n]− θ)× 0 + (E[θ̂n]− θ)2

= Var[θ̂n] + (Bias[θ̂n])2.

89 / 135



Foundations
of Statistical

Inference

Dudoit

Motivation

Example: mpg
Dataset

Statistical Inference

Random
Variables and
Their
Distributions

Random Variables

Probability
Distributions

Joint, Conditional,
and Marginal
Distributions

Expected Values and
Variances

Covariances and
Correlations

Robust Statistics

Estimators
and Their
Sampling
Distributions

Definitions

Example: Binomial
Distribution

Statistical
Models

Loss Functions
and Risk

Definitions

Squared Error Loss
Function

Absolute Error Loss
Function

Huber Loss Function

Example: tips
Dataset

References

Estimators and Their Sampling Distributions

• Ideally, we would like estimators to be both unbiased (i.e.,
on average equal to the parameter of interest) and have
low standard error (i.e., low variability around their
average). However, as we will discuss later, there is a
bias-variance trade-off.
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Example: Binomial Distribution

Flipping a biased coin.

• Suppose one has a biased coin and one wishes to estimate
the probability p that it lands heads on a any given flip.

• A natural estimator of p is obtained by flipping the coin
independently n times and recording the proportion of
heads.

• Let Xi denote the binary indicator for the outcome of the
ith coin flip, equal to 1 if it lands heads (“success”) and 0
if it lands tails (“failure”).

• The Xi are n independent and identically distributed
Bernoulli(p) random variables with “success” probability p,
i.e., Pr(Xi = 1) = p.
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Example: Binomial Distribution

• The mean of a Bernoulli(p) random variable X is

E[X ] = 0× (1− p) + 1× p = p

and its variance

Var[X ] = E[X 2]− (E[X ])2

= 02 × (1− p) + 12 × p − p2

= p(1− p).

• Let Yn denote the sum of the n random variables
{Xi : i = 1, . . . , n}, i.e., the total number of heads in the n
flips.
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Example: Binomial Distribution

• Then, the support of Yn is Yn = {0, 1, . . . , n} and Yn has
a Binomial(n, p) distribution with PMF

fBin(y ; n, p) =

(
n

y

)
py (1− p)n−y , y ∈ Yn.

• By the linearity property of expectations, the mean of Yn is

E[Yn] = E

[
n∑

i=1

Xi

]
=

n∑
i=1

E[Xi ] = np.

• By the linearity property of variances for independent
random variables, the variance of Yn is

Var[Yn] = Var

[
n∑

i=1

Xi

]
=

n∑
i=1

Var[Xi ] = np(1− p).
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Example: Binomial Distribution

• The proportion of heads in n flips, p̂n = Yn/n, is a natural
estimator of the parameter p. It is unbiased

E[p̂n] =
1

n
E[Yn] = p

and its variance decreases with the number of flips

Var[p̂n] =
1

n2
Var[Yn] =

p(1− p)

n
.

• Furthermore, according to the Central Limit Theorem, p̂n
is approximately normally distributed for large n

p̂n ∼ N

(
p,

√
p(1− p)

n

)
.
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Figure 15: Binomial distribution. Sampling distribution of proportion
of heads p̂n for n ∈ {10, 25, 50, 100} (over 10,000 samples). Solid red
line indicates mean and red dots plus/min one SE from mean.
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Figure 16: Binomial distribution. Sampling distribution of proportion
of heads p̂n for n ∈ {10, 25, 50, 100} (over 10,000 samples). Solid red
line indicates mean and dashed red lines plus/min one SE from mean.
Note different x-axis scales.
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Figure 17: Binomial distribution. Sampling distribution of proportion
of heads p̂n for n ∈ {10, 25, 50, 100} (over 10,000 samples).

97 / 135



Foundations
of Statistical

Inference

Dudoit

Motivation

Example: mpg
Dataset

Statistical Inference

Random
Variables and
Their
Distributions

Random Variables

Probability
Distributions

Joint, Conditional,
and Marginal
Distributions

Expected Values and
Variances

Covariances and
Correlations

Robust Statistics

Estimators
and Their
Sampling
Distributions

Definitions

Example: Binomial
Distribution

Statistical
Models

Loss Functions
and Risk

Definitions

Squared Error Loss
Function

Absolute Error Loss
Function

Huber Loss Function

Example: tips
Dataset

References

Statistical Models

“All models are wrong, but some are useful.” (Box, 1976)
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Statistical Models

• A statistical model is a set of distributions for a random
variable of interest.

• When one focuses on certain families of distributions (e.g.,
Gaussian distributions) or types of parameters of a
distribution (e.g., regression function), a model can
correspond to a set of parameter values.

• A model is an idealized representation of reality.

• Models involve assumptions about the data generating
mechanism and are used to make inference from the
sample to the population.
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Statistical Models

• E.g. Assumptions about PDF.
Let Y denote the height of a random Berkeley student. A
possible model for Y is the set of all Gaussian distributions
N(µ, σ), with mean µ ∈ R+ and standard deviation
σ ∈ R+.

• E.g. Assumptions about regression function.
Let Y denote the rent of a random Berkeley apartment
and let X1 denote the number of bedrooms, X2 the
number of bathrooms, X3 the square footage, X4 an
indicator for washer/dryer availability, and
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Statistical Models

X = (X1,X2,X3,X4). Possible models for the expected
rent are

E[Y |X ] = β0

E[Y |X ] = β0 + β1X1 + β2X2 + β3X3 + β4X4

E[Y |X ] = β0 +
K∑

k=1

βk I(X ∈ Ak)

E[Y |X ] = f (X ),

where the sets Ak form a partition of the covariate space
and f denotes an arbitrary function of the covariates X .

I The first constant model does not account for the
dependence of rent on obvious covariates.
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Statistical Models

I The second model is a linear regression model. It accounts
for obvious covariates, but involves adding incommensurate
variables and could miss non-linear relationships and
interactions.

I The third model is a regression tree model. It is well-suited
for covariates of different types and interactions, but could
lead to unstable estimators.

I The fourth general non-parametric model could be fit by,
e.g., robust local regression (e.g., loess), which does not
provide a simple interpretable regression function f . The
function could be very data-adaptive at the risk of
overfitting, i.e., fit the sample data very closely but not
additional data from the same population.
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Statistical Models

• E.g. Independence assumptions.
A pervasive assumption is that units in the sample are
drawn independently from the population, i.e., IID random
variables {X1, . . . ,Xn}.
Independence assumptions justify multiplying probabilities
for joint distributions and adding variances for sums of
random variables.

• Model assumptions are often unrealistic and hard to verify.
E.g. Independence assumptions.

• Wrong assumptions can lead to wrong inference.

• Inference results should be driven by the data and not by
model assumptions. Cf. Robustness.
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Statistical Models

• Models are often wrong, i.e., do not accurately represent
how the data were generated, but can still be useful, e.g.,
yield accurate predictions.

• When selecting a regression model, there can be a
trade-off between intepretability and predictive accuracy
(Breiman, 2001).
E.g. Simple parametric models (e.g., linear regression
model) are easier to interpret but potentially lead to less
accurate predictions than more complex or “black box”
models (e.g., ensembles of regression trees, neural
networks, loess).
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Statistical Models

• When selecting a model, there is also a trade-off between
bias and variance. More data-adaptive/complex models
tend to have less bias but larger variance.
E.g. Robust local regression (loess) and kernel density
estimation with different bandwidths.

• In particular, a model that fits the learning data very
closely often “generalizes” poorly on new test data.

• Multiple models can lead to the same fit/result.
E.g. Linear regression with polynomials of different degrees
can lead to similar fitted values and MSE (see below).
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Statistical Models

• The distinction between parametric and non-parametric
models can be problematic.

• There is no clear dichotomy, but rather a continuum, in
the degree of “parametricity” of distributions and methods.

• E.g. In non-parametric density estimation, the parameter
can be the entire density function, under some conditions
such as smoothness. In non-parametric regression, the
parameter can be the entire regression function E[Y |X ].

• The distinction may have been more relevant historically.

• Idem for the terms model-based and model-free.

• Cf. Terence’s Stuff: A Rose ... in IMS Bulletin, Volume
37, Issue 7, August/September 2008.
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Statistical Models: Example
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Figure 18: mpg dataset. Linear regression of mpg on horsepower,
polynomials of degree 1 to 4.
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Figure 19: mpg dataset. Robust local regression (loess) of mpg on
horsepower, 4 different spans.
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Statistical Models: Example

Table 3: mpg dataset. Empirical mean squared error for linear
regression and robust local regression (loess) of mpg on horsepower.

Linear regression
Degree 1 2 3 4

MSE 23.94 18.98 18.94 18.88

Robust local regression
Span 0.075 0.250 0.500 0.750
MSE 14.99 17.31 18.00 18.38
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Statistical Models

Essential aspects of statistical inference include:

• Identifying/selecting an appropriate model.

• Fitting the model to the data, i.e., deriving an “optimal”
estimator given the model.

• Assessing the performance of the model. Cf.
Goodness-of-fit (e.g., residual analysis), accuracy of
estimator/prediction, robustness of the results to modeling
assumptions.

Loss functions and risk play an essential role for each of these
issues.

110 / 135



Foundations
of Statistical

Inference

Dudoit

Motivation

Example: mpg
Dataset

Statistical Inference

Random
Variables and
Their
Distributions

Random Variables

Probability
Distributions

Joint, Conditional,
and Marginal
Distributions

Expected Values and
Variances

Covariances and
Correlations

Robust Statistics

Estimators
and Their
Sampling
Distributions

Definitions

Example: Binomial
Distribution

Statistical
Models

Loss Functions
and Risk

Definitions

Squared Error Loss
Function

Absolute Error Loss
Function

Huber Loss Function

Example: tips
Dataset

References

Loss Functions and Risk

• A loss function is a real-valued function L of a random
variable X and a parameter value θ (not necessarily the
true value):

L(X , θ) ∈ R .

• As the name suggests, loss functions are measures of
performance, indicating how far a parameter value is from
the data.

• Examples of loss functions, used in different inference
contexts, are listed in the table below.

111 / 135



Foundations
of Statistical

Inference

Dudoit

Motivation

Example: mpg
Dataset

Statistical Inference

Random
Variables and
Their
Distributions

Random Variables

Probability
Distributions

Joint, Conditional,
and Marginal
Distributions

Expected Values and
Variances

Covariances and
Correlations

Robust Statistics

Estimators
and Their
Sampling
Distributions

Definitions

Example: Binomial
Distribution

Statistical
Models

Loss Functions
and Risk

Definitions

Squared Error Loss
Function

Absolute Error Loss
Function

Huber Loss Function

Example: tips
Dataset

References

Loss Functions and Risk

Table 4: Loss functions.

Name Definition Application

Squared error, L2 (Y − θ(X ))2 Regression
– least squares estimation

Absolute error, L1 |Y − θ(X )| Regression
Indicator, zero-one I(Y , θ(X )) Classification
Negative log − log θ(X ) Density estimation

– maximum likelihood estimation

• Risk is the expected value of a loss function

R(P, θ) ≡ EP [L(X , θ)], (34)

where P denotes the distribution of X with respect to
which the expected value is computed.
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Loss Functions and Risk

• It is essential to note that risk can be computed with
respect to different distributions, e.g., the true unknown
data generating distribution P, the known data empirical
distribution Pn.

• Both parameters and estimators thereof can be defined as
risk minimizers for a suitably defined loss function.

I Parameters minimize risk with respect to the typically
unknown data generating distribution.

I Estimators minimize risk with respect to the known data
empirical distribution.

• Optimal statistical inference. A very broad class of
statistical inference methods can be framed in terms of
risk optimization.

I Least squares estimation (LSE) involves minimizing risk for
the squared error loss function.
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I Maximum likelihood estimation (MLE) involves minimizing
risk for the negative log loss function.
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Squared Error Loss Function

• One of the most widely used loss functions is the squared
error loss function or L2 loss function

L2(X , θ) ≡ (X − θ)2. (35)

• For the squared error loss function, risk is the mean
squared error (MSE),

R2(P, θ) ≡ EP [(X − θ)2] population risk (36)

=

{∑
x∈X (x − θ)2fX (x) (discrete)∫

x∈X (x − θ)2fX (x)dx (continuous)

R2(Pn, θ) =
1

n

n∑
i=1

(Xi − θ)2 empirical risk.
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Squared Error Loss Function

• Expected values minimize risk for the squared error loss
function.
The expected value EP [X ] minimizes risk for the squared
error loss function with respect to the distribution P

argminθ∈R R2(P, θ) = argminθ∈R EP [(X − θ)2] = EP [X ].
(37)

Proof. We proved earlier that the MSE is equal to the
variance plus bias squared, thus

EP [(X − θ)2] = VarP [X ] + (EP [X ]− θ)2

and risk is minimized wrt θ when bias is equal to zero,
that is, θ = EP [X ].

• The result holds for any distribution P.
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Squared Error Loss Function

• In particular, the empirical/sample average X̄n minimizes
empirical MSE (known), i.e., MSE with respect to the
data empirical distribution Pn

X̄n =
1

n

n∑
i=1

Xi = EPn [X ] = argminθ∈R
1

n

n∑
i=1

(Xi − θ)2.

(38)

• The population mean EP [X ] minimizes the population
MSE (unknown), i.e., MSE with respect to the data
generating distribution P.
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Absolute Error Loss Function

• With the squared error loss function, risk optimization
amounts to defining parameters and estimators as
population and sample means, respectively.

• However, means can be sensitive to outliers, i.e.,
observations that are distant from most of the other
observations.

• By contrast, medians are more robust to outliers.

• When robustness is an issue, it makes sense to consider a
loss function that measures discrepancies between random
variables and parameter values in terms of absolute
differences rather than squared differences, as squaring
tends to amplify differences.
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Absolute Error Loss Function

• The absolute error loss function or L1 loss function is
defined as

L1(X , θ) ≡ |X − θ|. (39)

• Risk for the absolute error loss function is the mean
absolute error (MAE)

R1(P, θ) ≡ EP [|X − θ|]. (40)

• The mean absolute error is minimized by the median

argminθ∈R R1(P, θ) = argminθ∈R EP [|X−θ|] = MedianP [X ].
(41)
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Absolute Error Loss Function

Proof. Use the short-hand notation m = MedianP [X ] and
suppose θ > m. Then,

|X − θ| − |X −m| =


θ −m, X ≤ m

θ + m − 2X , m < X ≤ θ
m − θ, X > θ

≥

{
θ −m, X ≤ m

m − θ, X > m
.
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Absolute Error Loss Function

Hence,

E[|X − θ|]− E[|X −m|]
≥ E [(θ −m) I(X ≤ m) + (m − θ) I(X > m)]

= (θ −m) Pr(X ≤ m) + (m − θ) Pr(X > m)

= (θ −m) Pr(X ≤ m) + (m − θ)(1− Pr(X ≤ m))

= 2(θ −m) Pr(X ≤ m) + (m − θ)

≥ 0,

as Pr(X ≤ m) ≥ 1/2. The proof for θ < m is similar.
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Huber Loss Function

• The squared error/L2 loss function is more convenient
mathematically than the absolute error/L1 loss function.

• Risk for the L2 loss function, i.e., the MSE, has a unique
minimizer (the mean), whereas risk for the L1 loss
function, i.e., the MAE, can have multiple minimizers
(non-uniqueness of the median).

• However, the MSE and the mean are more sensitive to
outliers than the MAE and the median.

• The Huber loss function is a compromise between the L1

and L2 loss functions defined as

LH(X , θ) ≡

{
1
2 (X − θ)2, |X − θ| ≤ δ
δ
(
|X − θ| − 1

2δ
)
, otherwise

, (42)

where δ ∈ R+ is a tuning parameter.
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Huber Loss Function

• The Huber loss function is quadratic for small differences
and linear for large differences, thus more robust to
outliers than the L2 loss function.

• There are no closed-form expressions for the risk minimizer
for the Huber loss function. Instead, one can use
optimization methods such as gradient descent.
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• A particular waiter is interested in inferring the tip
percentage he could expect. He collected the following
data on all n = 244 tables he served during a month of
employment: Total bill, tip, sex of customer tipping,
smoking status of customer, day, time, and size of party.

total bill tip sex smoker day time size tip percent
1 16.99 1.01 Female No Sun Dinner 2 0.06
2 10.34 1.66 Male No Sun Dinner 3 0.16
3 21.01 3.50 Male No Sun Dinner 3 0.17
4 23.68 3.31 Male No Sun Dinner 2 0.14
5 24.59 3.61 Female No Sun Dinner 4 0.15
6 25.29 4.71 Male No Sun Dinner 4 0.19

. . .

• In the USA, a typical tip is 15% of the total bill. Thus, we
expect a linear relationship between tip and total bill.
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Example: tips Dataset

• The mean tip percentage is 16.08%, most tips are between
10 and 20%, with a few outlying large tips (maximum of
70%).

• The tip percentage does not appear, however, to vary
much with variables such as sex, smoker, day, time, and
size.

• We therefore consider a constant model for the tip
percentage Y

E[Y ] = θ.

• What is a “good” estimator of θ? This can be defined in
terms of a loss function.
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• For the squared error loss function, the empirical risk
minimizer is the empirical average

Ȳn =
1

n

n∑
i=1

Yi = 0.16.

• For the absolute error loss function, the empirical risk
minimizer is the empirical median

Ỹn = MedianPn [Y ] = 0.15.

• Let’s consider the following estimates of the mean tip
percentage θ and examine how well they fit the data, i.e.,
how close they are to the observed tip percentages in terms
of the empirical risk for both the L2 and L1 loss functions

θ̂n = 0.10, 0.15, Ỹn, Ȳn, 0.20.
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Figure 20: tips dataset. Tip vs. total bill.
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Figure 21: tips dataset. Tip percentage vs. covariates.
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Figure 22: tips dataset. Gaussian kernel density estimator for tip
percentage θ. Vertical lines indicates different estimates of the mean
tip percentage, θ̂n = 0.10, 0.15, Ỹn, Ȳn, 0.20.
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Figure 23: tips dataset. Boxplots of residuals for different estimates
of the mean tip percentage, θ̂n = 0.10, 0.15, Ỹn, Ȳn, 0.20.
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Figure 24: tips dataset. Empirical MSE and MAE as a function of
mean tip percentage θ. Vertical lines indicates empirical mean (red)
and median (green).
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Figure 25: tips dataset. Empirical MSE and MAE as a function of
mean tip percentage θ, when large outlying tip percentages are
included in the dataset. Vertical lines indicates empirical mean (red)
and median (green).
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Figure 26: tips dataset. Empirical Huber risk, MSE, and MAE as a
function of mean tip percentage θ. Right panel is zoom on Huber
risk.
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Figure 27: tips dataset. Empirical Huber risk, MSE, and MAE as a
function of mean tip percentage θ, when large outlying tip
percentages are included in the dataset. Right panel is zoom on
Huber risk.
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