
Gradient
Descent for

Risk
Optimization

Dudoit

Motivation

Gradient
Descent
Optimization

Optimization

Batch Gradient
Descent Algorithm

Stochastic Gradient
Descent Algorithm

Convexity

Examples

Squared Error Loss
Function

Huber Loss Function

tips Dataset

Gradient Descent for Risk Optimization
Data 100: Principles and Techniques of Data Science

Sandrine Dudoit

Department of Statistics and Division of Biostatistics, UC Berkeley

Spring 2019

1 / 25



Gradient
Descent for

Risk
Optimization

Dudoit

Motivation

Gradient
Descent
Optimization

Optimization

Batch Gradient
Descent Algorithm

Stochastic Gradient
Descent Algorithm

Convexity

Examples

Squared Error Loss
Function

Huber Loss Function

tips Dataset

Outline

1 Motivation

2 Gradient Descent Optimization
2.1 Optimization
2.2 Batch Gradient Descent Algorithm
2.3 Stochastic Gradient Descent Algorithm
2.4 Convexity

3 Examples
3.1 Squared Error Loss Function
3.2 Huber Loss Function
3.3 tips Dataset

Version: 19/03/2019, 17:12

2 / 25



Gradient
Descent for

Risk
Optimization

Dudoit

Motivation

Gradient
Descent
Optimization

Optimization

Batch Gradient
Descent Algorithm

Stochastic Gradient
Descent Algorithm

Convexity

Examples

Squared Error Loss
Function

Huber Loss Function

tips Dataset

Motivation

• Optimal statistical inference. A very broad class of
statistical inference methods can be framed in terms of
risk optimization.

• Least squares estimation (LSE) involves minimizing risk for
the squared error loss function.

• Maximum likelihood estimation (MLE) involves minimizing
risk for the negative log loss function.

• One can obtain closed-form expressions for risk minimizers
for the squared error/L2 and absolute error/L1 loss
functions: Means minimize mean squared error (MSE),
while medians minimize mean absolute error (MAE).

• In general, however, there are no closed-form solutions for
risk optimization, e.g., Huber loss function.
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Motivation

• Instead, one can turn to numerical optimization methods
such as gradient descent, simulated annealing, and genetic
algorithms.
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Optimization

• Suppose we wish to minimize the function f : RJ → R,
i.e., find

argminθ∈RJ f (θ).

• The function f is referred to as objective function.

• In statistical inference, f typically corresponds to a risk
function, i.e., the expected value of a loss function.

• The function f could be the empirical risk for the squared
error loss function, i.e., the empirical mean squared error,

f (θ) = R2(Pn, θ) =
1

n

n∑
i=1

L2(Xi , θ) =
1

n

n∑
i=1

(Xi − θ)2,

where θ ∈ R.
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Optimization

• The function f could be the empirical risk for the Huber
loss function

f (θ) = RH(Pn, θ) =
1

n

n∑
i=1

LH(Xi , θ),

where

LH(X , θ) =

{
1
2(X − θ)2, |X − θ| ≤ δ
δ
(
|X − θ| − 1

2δ
)
, otherwise

,

θ ∈ R, and δ ∈ R+ is a tuning parameter.

6 / 25



Gradient
Descent for

Risk
Optimization

Dudoit

Motivation

Gradient
Descent
Optimization

Optimization

Batch Gradient
Descent Algorithm

Stochastic Gradient
Descent Algorithm

Convexity

Examples

Squared Error Loss
Function

Huber Loss Function

tips Dataset

Batch Gradient Descent Algorithm

• Gradient descent algorithms are iterative algorithms that
seek to iteratively improve the solution to a particular
optimization problem.

• That is, given a current estimate θ(t), the algorithm aims
to produce a next estimate θ(t+1) such that
f (θ(t)) ≥ f (θ(t+1)).

• The intuition behind gradient descent algorithms is that
the gradient (cf. slope) ∇θf (θ) suggests the direction in
which to update θ.

I If the gradient is negative, increase θ.
I If the gradient is positive, decrease θ.

• Specifically, the batch gradient descent algorithm is as
follows.

1 Choose a starting value θ0.
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Batch Gradient Descent Algorithm

2 Update θ according to the following iteration

θ(t+1) = θ(t) − α∇θf (θ(t)), (1)

where α is a tuning parameter known as learning rate.
3 Repeat Step 2 until a stopping criterion is met.

• As with any iterative algorithm, important and practical
decisions include the choice of starting value and stopping
rule.

• A variety of approach may be use for selecting starting
values.

I Risk minimizer for tractable related loss function (e.g.,
mean).

I Plotting, when possible, the objective function.
I Domain knowledge.
I Chosen at random.
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Batch Gradient Descent Algorithm

I Using multiple starting values is also advisable.

• Likewise, a variety of stopping rules can be used.
I Stop after a fixed number of iterations.
I Stop once θ doesn’t change between iterations, i.e.,

||θ(t+1) − θ(t)|| ≤ ε or |θ(t+1)
j − θ(t)j | ≤ ε1(|θ(t)j |+ ε2) when

elements of θ are of different magnitudes.
I Stop once the objective function doesn’t change between

iterations, i.e., |f (θ(t+1))− f (θ(t))| ≤ ε.
• The higher the learning rate α, the more “aggressive” the

moves, at the risk of overshooting the minimum. The
smaller the learning rate, the more precise the moves, but
the more time-consuming the implementation. In some
versions of the algorithm, the step size changes at each
iteration.
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Gradient Descent
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Figure 1: Gradient descent. The slope of the tangent line determines
in which direction to update θ in order to decrease the objective
function.
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Stochastic Gradient Descent Algorithm

• With the above gradient descent algorithm, the gradient is
computed for empirical risk based on the entire learning set

θ(t+1) = θ(t) − α1

n

n∑
i=1

∇θL(Xi , θ
(t)). (2)

• Such an approach, known as batch gradient descent, can
be computationally inefficient for large datasets.

• An alternative, known as stochastic gradient descent
(SGD), is to compute the gradient for a randomly chosen
observation Xi , that is, have the updates

θ(t+1) = θ(t) − α∇θL(Xi , θ
(t)). (3)
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Stochastic Gradient Descent Algorithm

• Stochastic gradient descent often takes steps away from
the optimum, but makes more aggressive updates and
often converges faster than batch gradient descent.

• Mini-batch gradient descent strikes a balance between
batch gradient descent and stochastic gradient descent by
using a random sample of several observations for each
update.
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Convexity

• Not all functions are equally easy to optimize.

• The empirical MSE has a unique global minimizer, the
mean.

X̄n = argminθ∈R R2(Pn, θ) = argminθ∈R
1

n

n∑
i=1

(Xi − θ)2.

• The empirical MAE could have multiple minima, the
median, but these are global minima.

X̃n = argminθ∈R R1(Pn, θ) = argminθ∈R
1

n

n∑
i=1

|Xi − θ|.

• Although there is no closed-form expression for the Huber
risk minimizer, it is unique.

13 / 25



Gradient
Descent for

Risk
Optimization

Dudoit

Motivation

Gradient
Descent
Optimization

Optimization

Batch Gradient
Descent Algorithm

Stochastic Gradient
Descent Algorithm

Convexity

Examples

Squared Error Loss
Function

Huber Loss Function

tips Dataset

Convexity

• The above loss functions are convex functions of the
parameter θ.

• A function f is convex if and only if it satisfies the
following inequality

f (αx + (1− α)y) ≤ αf (x) + (1− α)f (y), α ∈ [0, 1].
(4)

That is, the line segment between any two points on the
graph of the function lies above or on the graph.

• The function is concave if

f (αx + (1− α)y) ≥ αf (x) + (1− α)f (y), α ∈ [0, 1].
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Convexity

• For a twice differentiable function of a single variable, if
the second derivative is greater than or equal to zero for
its entire domain, then the function is convex.

• E.g. The quadratic function f (x) = x2 and the
exponential function f (x) = exp(x) are convex. The
logarithm function f (x) = log(x) is concave.

• For convex functions, any local minimum is also a global
minimum.

• Convexity of a loss function allows gradient descent to
efficiently find the global risk minimizer.

• While gradient descent will converge to a local minimum
for non-convex loss functions, these local minima are not
guaranteed to be globally optimal.
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Convexity
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Figure 2: Convexity.
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Squared Error Loss Function

• For the squared error loss function, the gradient
(derivative) is

∇θL2(X , θ) = ∇θ(X − θ)2 = −2(X − θ).

• The gradient descent iteration is

θ(t+1) = θ(t) + 2α
1

n

n∑
i=1

(Xi − θ(t)) = θ(t) + 2α(X̄n − θ(t)).

• The empirical mean is, as expected, a fixed point of the
algorithm, i.e., if θ(t) = X̄n, then θ(t+1) = X̄n.
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Huber Loss Function

• For the Huber loss function, the gradient (derivative) is

∇θLH(X , θ) =

{
∇θ

1
2(X − θ)2, |X − θ| ≤ δ

∇θδ
(
|X − θ| − 1

2δ
)
, otherwise

=

{
−(X − θ), |X − θ| ≤ δ
−δ sign(X − θ), otherwise

.
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Huber Loss Function

• The gradient descent iteration is

θ(t+1) = θ(t) + α
1

n

n∑
i=1

(Xi − θ(t)) I(|Xi − θ(t)| ≤ δ)

+αδ
1

n

n∑
i=1

I(Xi − θ(t) ≥ δ)

−αδ 1

n

n∑
i=1

I(Xi − θ(t) ≤ −δ).
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tips Dataset

• A particular waiter is interested in inferring the tip
percentage he could expect. He collected the following
data on all n = 244 tables he served during a month of
employment: Total bill, tip, sex of customer tipping,
smoking status of customer, day, time, and size of party.

total bill tip sex smoker day time size tip percent
1 16.99 1.01 Female No Sun Dinner 2 0.06
2 10.34 1.66 Male No Sun Dinner 3 0.16
3 21.01 3.50 Male No Sun Dinner 3 0.17
4 23.68 3.31 Male No Sun Dinner 2 0.14
5 24.59 3.61 Female No Sun Dinner 4 0.15
6 25.29 4.71 Male No Sun Dinner 4 0.19

. . .
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tips Dataset

• In the lecture “Foundations of Statistical Inference” we
performed exploratory data analysis (EDA) on this dataset
and decided to fit a constant model for the tip percentage
Y

E[Y ] = θ.

• We considered three different loss functions to select an
“optimal” estimator of θ:

I the squared error loss function, for which the optimal
estimator is the empirical mean,

I the absolute error loss function, for which the optimal
estimator is the empirical median,

I the Huber loss function, for which there is no closed-form
expression for the empirical risk minimizer.

• Here, we use gradient descent algorithms to optimize the
empirical Huber risk.
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Figure 3: tips dataset. Empirical Huber risk, MSE, and MAE as a
function of mean tip percentage θ. Right panel is zoom on Huber
risk.
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Figure 4: tips dataset. Batch gradient descent (α = 0.2, ε = 10−6 for
θ) for optimizing empirical Huber risk (δ = 0.2),
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Figure 5: tips dataset. First 30 iterations of batch gradient descent,
with different learning rates α, for optimizing empirical Huber risk
(δ = 0.2).
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Figure 6: tips dataset. First 30 iterations of batch and stochastic
gradient descent (α = 0.2) for optimizing empirical Huber risk
(δ = 0.2).
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