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Figure 1: Regression. Scatterplot of 500 covariate-outcome pairs
from an unknown data generating distribution. What is the
regression function?
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• Suppose we have a learning set
Ln = {(Xi ,Yi ) : i = 1, . . . , n} of n = 500 independent and
identically distributed (IID) covariate-outcome pairs from
an unknown data generating distribution P.

• How can we use these data to estimate the regression
function of Y on X : θ(X ) = EP [Y |X ]?

• Based on the scatterplot of Y vs. X , it seems that the
regression function is non-linear in X , i.e., a constant or
linear (in X ) regression function would be too simple to
capture the patterns/trends suggested by the plot.

• We could try fitting polynomials in X of higher degrees.
The higher the degree of the polynomial, the better the fit
on the learning set.
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• However, by arbitrarily increasing the polynomial degree,
we risk fitting the noise, as opposed to the actual signal,
in the learning data.

5 / 35



Risk
Optimization

and
Bias-Variance

Trade-Off

Dudoit

Bias-Variance
Trade-Off

Regression:
MSE and
MSPE

Regression Example: Model Complexity

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●
●

●

●

●

●
●

●●

●

●●
●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●●

●

●

●

●

●

●●

●

●●
●

●

●

●

●●

●

●●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●
●●

●

●

●
●

●

●
●

●

●●

●

●

●

●
●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●
●

●

●●

●

●●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●
●

●
●

●
●

●
●

●
●
●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●
●

●

●

●

●

−3 −2 −1 0 1 2 3

−
10

00
−

50
0

0
50

0

x

y

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●
●

●

●

●

●
●

●●

●

●●
●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●●

●

●

●

●

●

●●

●

●●
●

●

●

●

●●

●

●●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●
●●

●

●

●
●

●

●
●

●

●●

●

●

●

●
●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●
●

●

●●

●

●●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●
●

●
●

●
●

●
●

●
●
●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●
●

●

●

●

●

−3 −2 −1 0 1 2 3

−
10

00
−

50
0

0
50

0

J=0

x

y
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●
●

●

●

●

●
●

●●

●

●●
●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●●

●

●

●

●

●

●●

●

●●
●

●

●

●

●●

●

●●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●
●●

●

●

●
●

●

●
●

●

●●

●

●

●

●
●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●
●

●

●●

●

●●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●
●

●
●

●
●

●
●

●
●
●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●
●

●

●

●

●

−3 −2 −1 0 1 2 3
−

10
00

−
50

0
0

50
0

J=24

x

y

Figure 2: Linear regression complexity. Linear regression fits for
polynomials of degree 0 to 24.
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Figure 3: Robust local regression complexity. Loess fits for spans
ranging from 0.05 to 0.90.
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• In some cases, we may choose a model that is too simple
to represent the underlying data generation mechanism,
i.e., misses the signal in the learning data.
E.g. Fitting a constant regression function, when there is
in fact a non-linear relationship between the outcome and
the covariate.

• In others, we may choose a model that is too complex,
i.e., fits the noise in the learning data.
E.g. Fitting a regression function that is a high-degree
polynomial of the covariate, when there is in fact a simple
linear relationship between the outcome and the covariate.

• These two situations are referred to, respectively, as
underfitting and overfitting the learning data.
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• The phenomenon of overfitting/underfitting is related to
the bias of an estimator, i.e., how close its average is to
the parameter of interest, and to its variance or precision,
i.e., how variable it is around its expected value (not
necessarily the parameter, unless the estimator is
unbiased).

• Ideally, we’d like to minimize both bias and variance.

• However, this is not possible, as there is a trade-off
between bias and variance: Decreasing bias is typically
associated with an increase in variance and vice versa.

• In general, the more complex a model, the less biased and
more variable an estimator.

• The complexity of a model or estimator can be measured
in various ways.
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I The number of covariates for a regression function.
I The polynomial degree for a regression function.
I The number of leaf nodes for a classification or regression

tree.
I The span for robust local regression (i.e., loess) and the

bandwidth for kernel density estimation, i.e., how “local” a
smoother is.

I The penalty parameter for regularized regression, e.g.,
ridge regression.

I The number of input nodes and layers for a neural network.

• Note also that, in general, variance decreases with
increasing sample size, but not bias. As seen in our
discussion of survey sampling, one can become more and
more precise about a completely wrong answer!
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• Instead of attempting to simultaneously minimize both
bias and variance, one seeks to minimize risk or maximize
accuracy, i.e., the average “distance” between an estimator
and the parameter of interest.

• Risk for the squared error loss function, i.e., mean squared
error (MSE), can be decomposed in terms of bias and
variance components. That is, given an estimator θ̂ of a
parameter θ,

MSEP [θ̂, θ] ≡ EP [(θ̂ − θ)2] (1)

= EP [(θ̂ − EP [θ̂])2] + (EP [θ̂]− θ)2

= VarP [θ̂] + (BiasP [θ̂, θ])2.

In short,
MSE = Variance + Bias2.
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Proof.

EP [(θ̂ − θ)2] = EP [(θ̂ − EP [θ̂] + EP [θ̂]− θ)2]

= EP [(θ̂ − EP [θ̂])2] + EP [(EP [θ̂]− θ)2]

+2 EP [(θ̂ − EP [θ̂])(EP [θ̂]− θ)]

= VarP [θ̂] + (EP [θ̂]− θ)2

+2(EP [θ̂]− θ) EP [(θ̂ − EP [θ̂])]

= VarP [θ̂] + (BiasP [θ̂, θ])2,

where the third equality follows by noting that EP [θ̂]− θ is
a constant and the fourth by
EP [θ̂ − EP [θ̂]] = EP [θ̂]− EP [θ̂] = 0.
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• Note that expected values and variances refer to the
sampling distribution of an estimator, i.e., its distribution
over repeated random sampling from the population of
interest. Specifically, these quantities are computed with
respect to the unknown data generating/population
distribution P.
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Figure 4: Bias, variance, and accuracy.
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Figure 5: Bias-variance trade-off. Schematic representation of
bias-variance trade-off as a function of model complexity.
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Table 1: Bias-variance trade-off. Effect of model complexity and of
sample size on bias and variance.

Bias Variance

Complexity ↑ ↓ ↑

Sample size ↑ ? ↓
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• Figure 4 is a cartoon illustration of the notions of bias,
variance/precision, and accuracy. While helpful, it does
not illustrate the bias-variance trade-off related to model
complexity.

• Figure 5 illustrates the bias-variance trade-off as it relates
to model complexity. This figure is also an idealized
representation of this phenomenon.

I The term “complexity” is vague and needs to be precisely
defined. Complexity means different things depending on
the type of model/estimator, e.g., polynomial degree for
linear regression, smoother span for loess.

I In practice, bias and variance can be on very different
scales.

I In practice, the decay/increase of bias/variance with
complexity is not always smooth.
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Figure 6: Bias-variance trade-off: Linear regression. Bias, variance,
and MSE for linear regression fits for polynomials of degree 0 to 24.
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Figure 7: Bias-variance trade-off: Robust local regression. Bias,
variance, and MSE for loess fits for spans ranging from 0.05 to 0.90.
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Figure 8: Effect of sample size on bias and variance: Linear
regression. Bias and variance for linear regression fits vs. sample size
n, for polynomials of degree 0 to 4.
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Figure 9: Effect of sample size on bias and variance: Robust local
regression. Bias and variance for loess fits vs. sample size n, for
spans ranging from 0.05 to 0.90.
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Figure 10: Regression. True regression function
θ(x) = EP [Y |X = x ] = 1− 19x − 7x2 + 29x3.
VarP [Y |X ] = σ2 = 1002. X ∼ N(0, 1).
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• In the context of regression, the data structure is (X ,Y ),
where X ∈ RJ is a J-dimensional column vector of
covariates and Y ∈ R a scalar outcome.

• The parameter of interest is the regression function, i.e.,
the conditional expected value θ(X ) ≡ EP [Y |X ] of the
outcome given the covariates.

• A natural loss function is the squared error or L2 loss
function

L2((X ,Y ), θ) ≡ (Y − θ(X ))2. (2)
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• The population regression function (an unknown
parameter) minimizes risk, i.e., MSE, computed with
respect to the unknown population distribution P,

θ(X ) ≡ EP [Y |X ] = argminθ′∈Θ EP [(Y − θ′(X ))2], (3)

where no restrictions are placed on the parameter space Θ
for θ. That is, θ could be any function from RJ to R.

• In practice, when seeking to estimate θ, one does not have
access to the population distribution P, but only to the
empirical distribution Pn corresponding to a random
sample drawn from that population, i.e., a learning set,
Ln = {(Xi ,Yi ) : i = 1, . . . , n}.
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• It is them customary to estimate the regression function θ
by minimizing the empirical risk over a subset of the
parameter space, Θ̂ ⊆ Θ,

θ̂n(X ) ≡ argminθ′∈Θ̂ EPn [(Y − θ′(X ))2]. (4)

• Subsets Θ̂ of the parameter space Θ correspond to models
for the regression function.

• As seen in a previous lecture, one popular model is the
linear regression model,

E[Y |X ] = X>β =
J∑

j=1

βjXj = β1X1 + . . .+ βJXJ , (5)
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where the column vector β = (βj : j = 1, . . . , J) ∈ RJ

contains the parameters of the model, referred to as
regression coefficients.

• The least squares estimator (LSE) of the regression
coefficients β is a solution to the normal equations

X>n Yn = X>n Xnβ, (6)

where Xn is the n × J design matrix or model matrix, with
ith row corresponding to the ith covariate vector Xi , and
Yn is the n-dimensional column outcome vector, with ith
element corresponding to the ith outcome Yi , i = 1, . . . , n.

• When the design matrix is of full column rank, i.e., X>n Xn

is invertible, the normal equations have a unique solution

β̂n = (X>n Xn)−1X>n Yn. (7)
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• The regression function θ(x0), evaluated at a particular
covariate value x0, can be estimated by θ̂n(x0) = x>0 β̂n.

• Note that all inference is conditional on the covariates,
i.e., as if the design matrix Xn were fixed.
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• Suppose one is interested in estimating the conditional
expected value θ(x0) = EP [Y |X = x0] of an outcome
given the covariate value X = x0.

• Let θ̂n(x0) denote a particular estimator of θ(x0), e.g.,
from LSE for a linear regression model that is quadratic in
X or from loess with span 0.5.
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• Then, the risk for the squared error loss function, i.e.,
MSE, is the sum of the variance and of the square of the
bias of θ̂n(x0),

EP [(θ̂n(x0)− θ(x0))2|Xn] (8)

= EP

[(
θ̂n(x0)− EP [θ̂n(x0)|Xn]

)2|Xn

]
+
(
EP [θ̂n(x0)|Xn]− θ(x0)

)2

= VarP [θ̂n(x0)|Xn] + (BiasP [θ̂n(x0), θ(x0)|Xn])2.

In short,

MSE = Variance of θ̂ + (Bias of θ̂)2.
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Proof.

EP [(θ̂n(x0)− θ(x0))2|Xn]

= EP

[(
θ̂n(x0)− EP [θ̂n(x0)|Xn]

+ EP [θ̂n(x0)|Xn]− θ(x0)
)2|Xn

]
= EP

[(
θ̂n(x0)− EP [θ̂n(x0)|Xn]

)2|Xn

]
+ EP

[(
EP [θ̂n(x0)|Xn]− θ(x0)

)2|Xn

]
+ 2 EP

[(
θ̂n(x0)− EP [θ̂n(x0)|Xn]

)(
EP [θ̂n(x0)|Xn]− θ(x0)

)
|Xn

]
= VarP [θ̂n(x0)|Xn] + (BiasP [θ̂n(x0), θ(x0)|Xn])2

+ 2
(
EP [θ̂n(x0)|Xn]− θ(x0)

)
EP

[(
θ̂n(x0)− EP [θ̂n(x0)|Xn]

)
|Xn

]
= VarP [θ̂n(x0)|Xn] + (BiasP [θ̂n(x0), θ(x0)|Xn])2,

where the third equality follows by noting that
EP [θ̂n(x0)|Xn]− θ(x0) is a constant given the design
matrix Xn.
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Regression: Estimating the Regression Function

• Note that Equation (8) extends the simpler result of
Equation (1) to the case where the parameter of interest is
a regression function and one has to be mindful of
conditioning on the covariates.
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Regression: Predicting an Outcome

• Now suppose one is interested in predicting the actual
value of an outcome Y for which the covariates are
X = x0 and where (X ,Y ) are independent from the
learning set Ln.

• A natural predictor is the estimator for the conditional
expected value of Y given X = x0, i.e., θ̂n(x0).

• Then, the risk for the squared error loss function, i.e.,
MSE, is the sum of the variance of the outcome given the
covariates and of the variance and square of the bias of
θ̂n(x0),

EP [(Y − θ̂n(x0))2|Xn,X = x0] (9)

= VarP [Y |X = x0] + VarP [θ̂n(x0)|Xn] + BiasP [θ̂n(x0), θ(x0)|Xn]2
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Regression: Predicting an Outcome

In short,

MSE = Variance of Y + Variance of θ̂ + (Bias of θ̂)2.

Proof.

EP [(Y − θ̂n(x0))2|Xn,X = x0]

= EP [(Y − θ(x0) + θ(x0)− θ̂n(x0))2|Xn,X = x0]

= EP [(Y − θ(x0))2|Xn,X = x0]

+ EP [(θ(x0)− θ̂n(x0))2|Xn,X = x0]

+ 2 EP [(Y − θ(x0))(θ(x0)− θ̂n(x0))|Xn,X = x0]

= VarP [Y |X = x0] + EP [(θ(x0)− θ̂n(x0))2|Xn]

+ 2 EP [(Y − θ(x0))|X = x0] EP [(θ(x0)− θ̂n(x0))|Xn]

= VarP [Y |X = x0] + VarP [θ̂n(x0)|Xn] + (BiasP [θ̂n(x0), θ(x0)|Xn])2,
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where the third equality follows by independence of (X ,Y )
from the learning set and the fourth from Equation (8)
and the fact that EP [(Y − θ(x0))|X = x0] = 0.

• Note that although θ̂n(x0) is used both as an estimator of
θ(x0) and as a predictor of Y given X = x0, the MSE is
different.

• When estimating θ(x0) = EP [Y |X = x0], the MSE
compares θ̂n(x0) to θ(x0) and is defined as

EP [(θ̂n(x0)− θ(x0))2|Xn].
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• When predicting an outcome value Y given covariates
X = x0, the MSE, sometimes referred to as mean squared
prediction error (MSPE), compares θ̂n(x0) to Y and is
defined as

EP [(Y − θ̂n(x0))2|Xn,X = x0],

to account for the variance of the outcome given the
covariates Var[Y |X = x0], i.e., the additional variation of
the outcome around its expected value θ(x0).

• A common assumption is that of constant variance,
Var[Y |X ] = σ2.
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