
DS 100: Principles and Techniques of Data Science Date: April 26, 2019

Big Data

Name:

1 Big Data Potpourri [Fall 2018 Final]

1. The figure above from class shows four distinct file blocks labeled A, B, C, and D spread
across four machines, where each machine holds exactly 3 blocks.

(a) For the figure below, at most, how many of our machines can fail without any data loss?

(b) Suppose that instead of 4 machines, we have only 3 machines that can store 3 blocks
each. Suppose we want to be able to recover our data even if two machines fail. What is
the maximum total number of distinct blocks we can store?

(c) Same as part b, but now suppose we only need to be able to recover our data if one
machine fails. What is the maximum total number of distinct blocks we can store?

2. For this section, we will be working with the UC Berkeley Undergraduate Career Survey
dataset. Each year, the UC Berkeley career center surveys graduating seniors for their plans
after graduating. Below is a sample of the full dataset. The full dataset contains many thou-
sands of rows.

Each record of the survey table is an entry corresponding to a student. We have the student’s
major information (m name), company information (c name, c location), and the job
title (j name).

Suppose our table has 9,000 rows, with 3,000 unique job names, 1,700 unique company names,
817 unique locations, and 105 unique major names. The table above has many redundancies.
Suppose we wanted to instead use the star schema idea from lecture, where we have one fact
table and many dimension tables. How many dimension tables would we end up with? How
many rows would there be in our fact table? How many columns would there be in our fact
table? There may be more than one correct answer.

1



Big Data 2

j name c name c location m name

Llama Technician Google MOUNTAIN VIEW EECS
Software Engineer Salesforce SF EECS
Open Source Maintainer Github SF Computer Science
Big Data Engineer Microsoft REDMOND Data Science
Data Analyst Startup BERKELEY Data Science
Analyst Intern Google SF Philosophy

Table 1: survey Table

i. Number of dimension tables:

ii. Number of rows in fact table:

iii. Number of columns in fact table:

3. As described in class, the traditional data warehouse is a large tabular database that is peri-
odically updated through the ETL process, which combines data from several smaller data
sources into a common tabular format. The alternative is a data lake, where data is stored in its
original natural form. Which of the following are good reasons to use a data lake approach?

� A. The data is sensitive, e.g. medical data or government secrets.

� B. To maximize compatibility with commercial data analysis and visualization tools.

� C. When there is no natural way to store the data in tabular format.

� D. To ensure that the data is clean.

2 Distributed/Parallel Computing

2.1 Primer on ray

2.1.1 Overview

Ray is a distributed execution engine. The same code can be run on a single machine to achieve
efficient multiprocessing, and it can be used on a cluster for large computations.

When using Ray, several processes are involved.

1. Multiple worker processes execute tasks and store results in object stores. Each worker
is a separate process.

2. One object store per node stores immutable objects in shared memory and allows work-
ers to efficiently share objects on the same node with minimal copying and deserializa-
tion.



Big Data 3

3. One raylet per node assigns tasks to workers on the same node.

4. A driver is the Python process that the user controls. For example, if the user is running
a script or using a Python shell, then the driver is the Python process that runs the script
or the shell. A driver is similar to a worker in that it can submit tasks to its raylet and get
objects from the object store, but it is different in that the raylet will not assign tasks to
the driver to be executed.

5. A Redis server maintains much of the system’s state. For example, it keeps track of
which objects live on which machines and of the task specifications (but not data). It can
also be queried directly for debugging purposes.

2.1.2 Asynchronous Computation in Ray

Ray enables arbitrary Python functions to be executed asynchronously. This is done by desig-
nating a Python function as a remote function.

For example, a normal Python function looks like this.

1 def add1(a, b):
2 return a + b

A remote function looks like this.

1 @ray.remote
2 def add2(a, b):
3 return a + b

2.1.3 Remote functions

Whereas calling add1(1, 2) returns 3 and causes the Python interpreter to block until the
computation has finished, calling add2.remote(1, 2) immediately returns an object ID
and creates a task. The task will be scheduled by the system and executed asynchronously
(potentially on a different machine). When the task finishes executing, its return value will be
stored in the object store.

1 x_id = add2.remote(1, 2)
2 ray.get(x_id) # 3

The following simple example demonstrates how asynchronous tasks can be used to parallelize
computation.

1 import time
2

3 def f1():
4 time.sleep(1)



Big Data 4

5

6 @ray.remote
7 def f2():
8 time.sleep(1)
9

10 # The following takes ten seconds.
11 [f1() for _ in range(10)]
12

13 # The following takes one second (assuming the system has at least
ten CPUs).

14 ray.get([f2.remote() for _ in range(10)])

2.2 Interview Question: How can we sort large array of numbers in par-
allel?


