DS 100/200: Principles and Techniques of Data Science Date: March 15, 2019

Discussion
$$\#7$$
 Exam Prep

Name:

1. Suppose in some universe, the true relationship between the measured luminosity of a single star Y can be written in terms of a single feature ϕ of that same star as

$$Y = \theta^* \phi + \epsilon$$

where $\phi \in \mathbb{R}$ is some non-random scalar feature, $\theta^* \in \mathbb{R}$ is a non-random scalar parameter, and ϵ is a random variable with $\mathbb{E}[\epsilon] = 0$ and $\operatorname{var}(\epsilon) = \sigma^2$. For each star, you have a set of features $\Phi = \begin{bmatrix} \phi_1 & \phi_2 & \dots & \phi_n \end{bmatrix}^T$ and luminosity measurements $\mathbf{y} = \begin{bmatrix} y_1 & y_2 & \dots & y_n \end{bmatrix}^T$ generated by this relationship. Your Φ may or may not include the feature ϕ described above. The ϵ_i for the various y_i have the same probability distribution and are independent of each other.

(a) Suppose you have information about the exact ϕ value for each star, but try to fit a linear model for Y that includes an intercept term θ_0 .

$$Y = \theta_0 + \theta_1 \phi$$

Note the true relationship has no intercept term, so our model is not quite correct. Let $\hat{\theta}_0$ and $\hat{\theta}_1$ be the values that minimize the average L_2 loss. Let \mathbf{y} be the actual observed data and $\hat{\mathbf{y}} = \hat{\theta}_0 + \hat{\theta}_1 \boldsymbol{\phi}$ be the fitted values.

i. Which of the following could possibly be the value of $\hat{\theta}_0$ after fitting our model? Select all that apply; at least one is correct.

 \Box A. -1 \Box B. 0 \Box C. 1 \Box D. 10

ii. Which of the following could possibly be the residual vector for our model? Select all that apply; at least one is correct.

$$\Box A. \begin{bmatrix} -2 & -4 & 6 \end{bmatrix}^T \quad \Box B. \begin{bmatrix} 0.0001 & 0.0003 & -0.0005 \end{bmatrix}^T \Box C. \begin{bmatrix} 3 & 12 & -9 \end{bmatrix}^T \quad \Box D. \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$$

- 2. Throughout this section we refer to "least squares regression", which is the process of minimizing the average L2 loss using a linear regression model. Ordinary least squares is the version of least squares regression where we do not use regularization. Assume throughout that our model includes a bias term.
 - (a) What is always true about the residuals in least squares regression? Select all that apply.

- \Box A. They are orthogonal to the column space of the features.
- \square B. They represent the errors of the predictions.
- \square C. Their sum is equal to the mean squared error.
- \Box D. Their sum is equal to zero.
- \Box E. None of the above.
- (b) Which are true about the predictions made by OLS? Select all that apply.
 - \Box A. They are projections of the observations onto the column space of the features.
 - \square B. They are linear in the chosen features.
 - \Box C. They are orthogonal to the residuals.
 - \Box D. They are orthogonal to the column space of the features.
 - \Box E. None of the above.
- (c) Which of the following would be true if you chose mean absolute error (L1) instead of mean squared error (L2) as your loss function? Select all that apply.
 - \Box A. The results of the regression would be more sensitive to outliers.
 - \square B. You would not be able to use gradient descent to find the regression line.
 - \Box C. You would not be able to use the normal equation to calculate your parameters.
 - \Box D. The sum of the residuals would now be zero.
 - \Box E. None of the above.
- 3. Let $\hat{\boldsymbol{y}} \in \mathbb{R}^n$ be the vector of fitted values in the ordinary least squares regression of $\boldsymbol{y} \in \mathbb{R}^n$ on the full column-rank feature matrix $\boldsymbol{\Phi} \in \mathbb{R}^{n \times d}$ with *n* much larger than *d*. Denote the fitted coefficients as $\hat{\boldsymbol{\beta}} \in \mathbb{R}^d$ and the vector of residuals as $\boldsymbol{e} \in \mathbb{R}^n$.
 - (a) What is $\boldsymbol{\Phi}(\boldsymbol{\Phi}^T\boldsymbol{\Phi})^{-1}\boldsymbol{\Phi}^T\boldsymbol{y}?$

 \bigcirc A. **0** \bigcirc B. \hat{y} \bigcirc C. e \bigcirc D. $\hat{\beta}$ \bigcirc E. 1 \bigcirc F. None of the above

(b) What is $\Phi(\Phi^T \Phi)^{-1} \Phi^T \hat{y}$? Notice: This problem has a hat in \hat{y} .

 \bigcirc A. **0** \bigcirc B. \hat{y} \bigcirc C. e \bigcirc D. $\hat{\beta}$ \bigcirc E. 1 \bigcirc F. None of the above

Suppose $e \neq 0$. Define a new feature matrix Ψ by appending the residual vector e to the feature matrix Φ . In other words,

$$\Psi = \left[egin{array}{cccccc} ert &ert &$$

(c) We now want to fit the model $\boldsymbol{y} = \boldsymbol{\Psi}\boldsymbol{\gamma} = \gamma_1 \boldsymbol{\Phi}_{:,1} + \gamma_2 \boldsymbol{\Phi}_{:,2} + \dots + \gamma_d \boldsymbol{\Phi}_{:,d} + \gamma_{d+1}\boldsymbol{e}$ by choosing $\hat{\boldsymbol{\gamma}} = [\hat{\gamma}_1 \dots \hat{\gamma}_{d+1}]^T$ to minimize the L_2 loss. What is $\hat{\gamma}_{d+1}$?

- $\bigcirc A. \ 0 \ \bigcirc B. \ 1 \ \bigcirc C. \ \boldsymbol{e}^{T} \boldsymbol{y} \ \bigcirc D. \ 1 \hat{\boldsymbol{\beta}}^{T} \hat{\boldsymbol{\beta}}$ $\bigcirc E. \ (\Phi^{T} \Phi)^{-1} \Phi^{T} \ \bigcirc F. \text{ None of the above}$
- 4. We collect some data $\mathcal{D} = \{(x_1, y_1), ..., (x_n, y_n)\}$ and decide to model the relationship between \boldsymbol{X} and \boldsymbol{y} as

$$oldsymbol{y}=eta_1oldsymbol{\Phi}_{:,1}+eta_2oldsymbol{\Phi}_{:,2}$$

where $\Phi_{i,:} = \begin{bmatrix} 1 & x_i \end{bmatrix}$ We found the estimates $\hat{\beta}_1 = 2$ and $\hat{\beta}_2 = 5$ for the coefficients by minimizing the L_2 loss. Given that $\Phi^T \Phi = \begin{bmatrix} 4 & 2 \\ 2 & 5 \end{bmatrix}$, answer the following problems. If not enough information is given, write "Cannot be determined."

(a) What was the sample size n? Hint: Consider the form of the feature matrix.

- (b) What must $\boldsymbol{\Phi}^T \boldsymbol{y}$ be for this data set?
- 5. Consider the following loss function based on data x_1, \ldots, x_n with mean \overline{x} :

$$\ell(\beta) = \log \beta + \frac{\overline{x}}{\beta} + \frac{1}{n} \sum_{i=1}^{n} e^{-x_i/\beta}$$

Given an estimate $\beta^{(t)}$, write out the update $\beta^{(t+1)}$ after one iteration of gradient descent with step size α .