DS 100/200: Principles and Techniques of Data Science Date: March 15, 2019

Discussion #7

Name:

Geometry of Least Squares

1. This diagram shows the geometry of 3 observations with 2 features. ®; is the column vector of
the three values for feature 1, and @, is the column vector of values for feature 2. We’re fitting
a model with parameters 6, a two-element vector, that determines a linear combination of the
2 features. A choice of ¢ gives fitted values for the 3 observations, and these fitted values are
always in the column space of ®. The observed y, a vector of the response values for the 3
observations, is not in the column space of ®. The least-squares choice for 6 is the one for
which @ is closest to y. This diagram is analogous to a setting with more observations and
more features.

e=y— P04 squares

y=P0,0 squares

(a) From the image above, what can we say about the residuals and the column space of
®? Write this mathematically and prove this statement using a calculus-based argument
about minimizing the linear regression loss function.
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(b) Show that § = (®7®)~1®”Y. from the fact above for the least squares solution ®.

(c) Let @ be an x p design matrix with full column rank (the rank is equal to the number of
columns). In this question, we will look at properties of matrix H = ®(®7®)~'®7 that
appears in linear regression.

1. Recall for a vector space V' that a projection P : V' — V' is a linear transformation
such that P? = P. Show that H is a projection matrix.

i1. This is often called the “hat matrix™ because it puts a hat on y, the observed responses
used to train the linear model. Show that Hy = ¥

iii. Show that M = I — H is a projection matrix.

iv. Show that My results in the residuals of the linear model.
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v. Notice that the hat matrix is a function of our observations ® rather than our response
variable y. Intuitively, what do the values in our hat matrix represent? It might be
helpful to write ¥; as a summation.

(d) We can show that rank(®) = rank(®7®) by showing that these two matrices have the
same null space. List some reasons why ® might not have full column rank, which would
make $7'® not invertible.

Gradients

2. On the leftis a 3D plot of f(z,y) = (x — 1)* + (y — 3)%. On the right is a plot of its gradient
field. Note that the arrows show the relative magnitudes of the gradient vector.
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(a) Is this function convex? Make a visual argument—it doesn’t have to be formal.

(b) Superimpose a contour plot of this function for f(z,y) = 0,1, 2, 3,4, 5 onto the gradient
field.

(c) What do you notice about the relationship between the level curves and the gradient
vectors?
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(d) From the visualization, what do you think is the minimal value of this function and where
does it occur?

T
(e) Calculate the gradient V f = [% g—;] .
(f) When V f = 0, what are the values of x and y?

3. In this question, we will explore some basic properties of the gradient.

Note: In this class, we use the following conventions:

e 1 represents a scalar

e X represents a random variable

e X represents a vector

e X represents a matrix or a random vector (context will tell)

(a) Determine the derivative of f(z) = ag+a;x and gradient of g(z1, x9) = ap+ a1 +aszs.

(b) Suppose x = [a:l Ty ... xn] T, and h(x) = a’'x, where a, x € R". Determine V.

(c) Determine the gradient of f(x) = x'x. (Hint: f is a scalar-valued function. How can
you write x'x as a sum of scalars?)



