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1. Suppose in some universe, the true relationship between the measured luminosity of a
single star Y can be written in terms of a single feature φ of that same star as

Y = θ∗φ+ ε

where φ ∈ R is some non-random scalar feature, θ∗ ∈ R is a non-random scalar
parameter, and ε is a random variable with E[ε] = 0 and var(ε) = σ2. For each

star, you have a set of features Φ =
[
φ1 φ2 ... φn

]T
and luminosity measurements

y =
[
y1 y2 ... yn

]T
generated by this relationship. Your Φ may or may not include

the feature φ described above. The εi for the various yi have the same probability
distribution and are independent of each other.

(a) What is E[Y ]?

© A. 0 © B. θ∗φ © C. φ(ΦTΦ)−1ΦTy
© D. θ∗ © E. None of the above

(b) What is var(Y )?

© A.
σ2

n
© B.

σ2

n2
© C. 0

© D.
1

n− 1

n∑
i=1

(
yi −

1

n

n∑
i=1

yi

)2

© E. None of the above

2. What parameter estimate would minimize the following regularized loss function:

`(θ) = λ(θ − 4)2 +
1

n

n∑
i=1

(xi − θ)2 (1)

© A. θ̂ = 1
λn

∑n
i=1 xi

© B. θ̂ = 4 + 1
λn

∑n
i=1 xi

© C. θ̂ = 1
n(λ+1)

∑n
i=1 xi

© D. θ̂ = λ
λ+1

+ 1
n(λ+1)

∑n
i=1(xi − 4)

© E. θ̂ = 4λ
λ+1

+ 1
n(λ+1)

∑n
i=1 xi

1
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3. Suppose X1, . . . , Xn are random variables with E[Xi] = µ∗ and Var[Xi] = θ∗. Consider
the following loss function

`(θ) = log(θ) +
1

nθ

n∑
i=1

X2
i .

Let θ̂ denote the minimizer for `(θ). What is E[ θ̂ ]?

© A. θ∗ © B. θ∗ + µ∗ © C. θ∗ + µ∗/2 © D. E [θ∗ + µ∗] © E. θ∗ + (µ∗)2

© F. (θ∗ + µ∗)2
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4. Let x1, . . . , xn denote any collection of numbers with average x = 1
n

∑n
i=1 xi.

(a)
∑n

i=1(xi − x)2 ≤
∑n

i=1(xi − c)2 for all c.

© A. True © B. False

(b)
∑n

i=1 |xi − x| ≤
∑n

i=1 |xi − c| for all c.

© A. True © B. False

5. Consider the following loss function based on data x1, . . . , xn:

`(µ, σ) = log(σ2) +
1

nσ2

n∑
i=1

(xi − µ)2.

(a) Which estimator µ̂ is a minimizer for µ, i.e. satisfies `(µ̂, σ2) ≤ `(µ, σ2) for any
µ, σ?

© A. µ̂ = 0

© B. µ̂ = 1
n

∑n
i=1 xi
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© C. µ̂ = 1
n

∑n
i=1 xi + log

(
1
n

∑n
i=1 xi

)2
© D. µ̂ = 1

nσ2

∑n
i=1 xi + log (σ2)

© E. µ̂ = median(x1, . . . , xn).

(b) Which of the following is the result of solving `σ = 0 for σ (for fixed µ)?

© A. σ = 1
n

∑n
i=1(xi − µ)2.

© B. σ =
√

1
n

∑n
i=1(xi − µ)2.

© C. σ = 2
n

∑n
i=1(µ− xi).

© D. σ =
√

1
n

∑n
i=1

∑n
j=1(xi − xj)2.

6. Suppose we create a new loss function called the OINK loss, defined as follows for a
single observation:

LOINK(θ, x, y) =

{
a(fθ(x)− y) fθ(x) ≥ y

b(y − fθ(x)) fθ(x) < y

You decide to use the constant model (given on the left) and average OINK loss (given
on the right).

fθ(x) = θ L(θ,x,y) =
1

n

n∑
i=1

LOINK(θ, xi, yi)

The data are given below. Find the optimal θ̂ that minimizes the loss.

x 3 1 5 4 2 0 6
y 40 0 50 30 20 60 10

(a) when a = b = 1

(b) when a = 1, b = 5

(c) when a = 3, b = 6


