DS 100/200: Principles and Techniques of Data Science Date: March 8, 2019

Discussion #6 Exam Prep

Name:

1. Suppose in some universe, the true relationship between the measured luminosity of a single star Y can be written in terms of a single feature ϕ of that same star as

$$Y = \theta^* \phi + \epsilon$$

where $\phi \in \mathbb{R}$ is some non-random scalar feature, $\theta^* \in \mathbb{R}$ is a non-random scalar parameter, and ϵ is a random variable with $\mathbb{E}[\epsilon] = 0$ and $\operatorname{var}(\epsilon) = \sigma^2$. For each star, you have a set of features $\Phi = \begin{bmatrix} \phi_1 & \phi_2 & \dots & \phi_n \end{bmatrix}^T$ and luminosity measurements $\mathbf{y} = \begin{bmatrix} y_1 & y_2 & \dots & y_n \end{bmatrix}^T$ generated by this relationship. Your Φ may or may not include the feature ϕ described above. The ϵ_i for the various y_i have the same probability distribution and are independent of each other.

- (a) What is $\mathbb{E}[Y]$?
 - $\bigcirc A. \ 0 \qquad \bigcirc B. \ \theta^* \phi \qquad \bigcirc C. \ \phi(\Phi^T \Phi)^{-1} \Phi^T \mathbf{y} \\ \bigcirc D. \ \theta^* \qquad \bigcirc E. \ \text{None of the above}$
- (b) What is var(Y)?

$$\bigcirc A. \quad \frac{\sigma^2}{n} \qquad \bigcirc B. \quad \frac{\sigma^2}{n^2} \qquad \bigcirc C. \quad 0$$
$$\bigcirc D. \quad \frac{1}{n-1} \sum_{i=1}^n \left(y_i - \frac{1}{n} \sum_{i=1}^n y_i \right)^2 \qquad \bigcirc E. \text{ None of the above}$$

2. What parameter estimate would minimize the following regularized loss function:

$$\ell(\theta) = \lambda(\theta - 4)^2 + \frac{1}{n} \sum_{i=1}^n (x_i - \theta)^2$$
(1)

$$\bigcirc A. \quad \theta = \frac{1}{\lambda n} \sum_{i=1}^{n} x_i$$
$$\bigcirc B. \quad \hat{\theta} = 4 + \frac{1}{\lambda n} \sum_{i=1}^{n} x_i$$
$$\bigcirc C. \quad \hat{\theta} = \frac{1}{n(\lambda+1)} \sum_{i=1}^{n} x_i$$
$$\bigcirc D. \quad \hat{\theta} = \frac{\lambda}{\lambda+1} + \frac{1}{n(\lambda+1)} \sum_{i=1}^{n} (x_i - 4)$$
$$\bigcirc E. \quad \hat{\theta} = \frac{4\lambda}{\lambda+1} + \frac{1}{n(\lambda+1)} \sum_{i=1}^{n} x_i$$

 $\mathbf{2}$

3. Suppose X_1, \ldots, X_n are random variables with $\mathbb{E}[X_i] = \mu^*$ and $\operatorname{Var}[X_i] = \theta^*$. Consider the following loss function

$$\ell(\theta) = \log(\theta) + \frac{1}{n\theta} \sum_{i=1}^{n} X_i^2.$$

Let $\widehat{\theta}$ denote the minimizer for $\ell(\theta)$. What is $\mathbb{E}[\widehat{\theta}]$?

 $\bigcirc A. \ \theta^* \ \bigcirc B. \ \theta^* + \mu^* \ \bigcirc C. \ \theta^* + \mu^*/2 \ \bigcirc D. \ \mathbb{E} \left[\theta^* + \mu^*\right] \ \bigcirc E. \ \theta^* + (\mu^*)^2$

- 4. Let x_1, \ldots, x_n denote any collection of numbers with average $\overline{x} = \frac{1}{n} \sum_{i=1}^n x_i$. (a) $\sum_{i=1}^n (x_i \overline{x})^2 \leq \sum_{i=1}^n (x_i c)^2$ for all c.

 \bigcirc A. True \bigcirc B. False

- (b) $\sum_{i=1}^{n} |x_i \overline{x}| \le \sum_{i=1}^{n} |x_i c|$ for all *c*. \bigcirc A. True \bigcirc B. False
- 5. Consider the following loss function based on data x_1, \ldots, x_n :

$$\ell(\mu, \sigma) = \log(\sigma^2) + \frac{1}{n\sigma^2} \sum_{i=1}^n (x_i - \mu)^2.$$

- (a) Which estimator $\hat{\mu}$ is a minimizer for μ , i.e. satisfies $\ell(\hat{\mu}, \sigma^2) \leq \ell(\mu, \sigma^2)$ for any $\mu, \sigma?$
 - \bigcirc A. $\hat{\mu} = 0$ $\bigcirc B. \ \hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$

$$\bigcirc C. \quad \hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i + \log\left(\frac{1}{n} \sum_{i=1}^{n} x_i\right)^2$$
$$\bigcirc D. \quad \hat{\mu} = \frac{1}{n\sigma^2} \sum_{i=1}^{n} x_i + \log\left(\sigma^2\right)$$
$$\bigcirc E. \quad \hat{\mu} = \texttt{median}(x_1, \dots, x_n).$$

(b) Which of the following is the result of solving $\ell \sigma = 0$ for σ (for fixed μ)?

$$\bigcirc A. \ \sigma = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2.$$

$$\bigcirc B. \ \sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2}.$$

$$\bigcirc C. \ \sigma = \frac{2}{n} \sum_{i=1}^{n} (\mu - x_i).$$

$$\bigcirc D. \ \sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} (x_i - x_j)^2}.$$

6. Suppose we create a new loss function called the OINK loss, defined as follows for a single observation:

$$L_{OINK}(\theta, x, y) = \begin{cases} a(f_{\theta}(x) - y) & f_{\theta}(x) \ge y\\ b(y - f_{\theta}(x)) & f_{\theta}(x) < y \end{cases}$$

You decide to use the constant model (given on the left) and average OINK loss (given on the right).

$$f_{\theta}(x) = \theta$$
 $L(\theta, \mathbf{x}, \mathbf{y}) = \frac{1}{n} \sum_{i=1}^{n} L_{OINK}(\theta, x_i, y_i)$

The data are given below. Find the optimal $\hat{\theta}$ that minimizes the loss.

- (a) when a = b = 1
- (b) when a = 1, b = 5
- (c) when a = 3, b = 6