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Guess the winner!

From Kohavi, Longbotham, et al. (2009).
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Guess the winner!

From Kohavi, Longbotham, et al. (2009).
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10x revenue!



Guess the winner!

From Kohavi, Deng, et al. (2012).
3



Guess the winner!

From Kohavi, Deng, et al. (2012). 3

+10% revenue



Yes, the color thing is real.
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+$10MM annually



For years, Microsoǌt, like many other companies, had
relied on expert designers—rather than the behavior
of actual users—to define corporate style guides and
colors.

From Kohavi and Thomke (2017).
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“Which version is better?” is a thorny question.

• What I’d really like to know:
1. What would happen if I were to show everyone version A?
2. What would happen if I were to show everyone version B?

• A simpler version:
1. What would happen if I were to show you version A?
2. What would happen if I were to show you version B?

• I can never (reliably) answer this question!

“The fundamental problem of causal inference”
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Carefully designed,
randomized controlled experiments are the
only reliable way to learn what works best.
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Sometimes the only thing you can do with a poorly
designed experiment is to try to find out what it died
of. (Fisher)

From Box, J. S. Hunter, and W. G. Hunter (2005).
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1. The need for randomized experiments

• Prediction, estimation, and causal inference
• The two benefits of randomization

2. Design choices

3. Sequential experimentation
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Prediction, estimation, and causal inference
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Prediction, estimation, and causal inference:
a coarse classification of statistical problems

Suppose I have data on birth weights at a certain hosptital,
and whether each mother smoked.
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Prediction, estimation, and causal inference:
a coarse classification of statistical problems

Suppose I have data on birth weights at a certain hosptital,
and whether each mother smoked.

A prediction problem:
Can you predict the birth weight of the next baby,
given the mother’s smoking status and other info?

Use any algorithm we want, check accuracy on held-out data.
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Prediction, estimation, and causal inference:
a coarse classification of statistical problems

Suppose I have data on birth weights at a certain hosptital,
and whether each mother smoked.

An estimation problem:
What is the (adjusted) difference in birth weight
between smokers and nonsmokers, in the population?

How precise is that estimate?

Need a probability model.
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Prediction, estimation, and causal inference:
a coarse classification of statistical problems

Suppose I have data on birth weights at a certain hosptital,
and whether each mother smoked.

A causal inference problem:
What will be the effect on birth weight of
telling mothers to stop smoking?

Need two groups of mothers similar except for treatment.
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Prediction, estimation, and causal inference:
a coarse classification of statistical problems

Suppose I have data on birth weights at a certain hosptital,
and whether each mother smoked.

A causal inference problem:
What will be the effect on birth weight of
telling mothers to stop smoking?

Need two groups of mothers similar except for treatment.

Randomized assignment yields such groups.
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The two benefits of randomization
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First benefit of randomization: freedom from bias

Designing an experiment is like gambling with the
devil: Only a random strategy can defeat all his
betting systems. (Fisher)

From Box, J. S. Hunter, and W. G. Hunter (2005).
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From Freedman, Pisani, and Purves (2007).

10



From Freedman, Pisani, and Purves (2007).
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Second benefit of randomization:
a “reasoned basis for inference”

By putting known randomness into the world,
we justify probability calculation by design.

An idea due to Fisher. Also known as
“putting a rabbit into the hat”. (Freedman)

Without randomization, probabilities are justified
purely by a model.
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Don’t fall in love with a model.

From Box, J. S. Hunter, and W. G. Hunter (2005).
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1. The need for randomized experiments

2. Design choices

• Choosing the unit of randomization
• Choosing who to enroll
• Choosing an outcome metric

3. Sequential experimentation
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Choosing the unit of randomization
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Pricing is a tricky thing to experiment on.

From keepa.com

14



How would you run a pricing experiment?

• Randomize by session?

• Randomize by user?
• Randomize by product?
• Randomize by product category?
• Randomize by day?

The right unit of randomization is sometimes not obvious!
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The unit of analysis should be the same as
the unit of randomization.

Whatever your unit of randomization,

• compute one summary outcome per unit, and
• analyze results with these outcomes.

Sample size = number of randomized units!
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The unit of analysis should be the same as
the unit of randomization.

Whatever your unit of randomization,

• compute one summary outcome per unit, and
• analyze results with these outcomes.

Sample size = number of randomized units!
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Making the unit of analysis differ from the unit of randomization
is dangerous.

Be wary of finer-grained analysis, e.g.,

• randomizing by city, analyzing by user.
• randomizing by category, analyzing by product.

It can be done, but requires delicate modeling assumptions.

An extreme example: imagine we have just two groups,
say San Francisco and Los Angeles.

There are only two possible randomizations.
The randomization implies only two possible outcomes.
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Choosing who to enroll
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An aside: sample size planning / power calculations

The guarantee of a hypothesis test:

“If the treatment has no effect,
the chance of false discovery is at most 5%.”

What if the treatment does have an effect?

“If the treatment has at least a 20% liǕt,
the chance of detecting it is at least 80%.”

How to guarantee the second statement?
Sample size planning.
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Type I error rate

Minimum planned-for effect

Power



An aside: sample size planning / power calculations

• Type I error rate: 5%
• Minimum planned-for effect: 20% liǕt
• Power: 80%

>>> power_prop_test(p1=0.1, p2=0.1 * 1.2,
significance_level=0.05,
power=0.8).n_per_group

3840.847482436278

19



Randomize as lazily as possible.

50,000 visitors/week → 1% advance to checkout → 20% complete

Say our variation increases conversion rate from 20% to 25%.

Bad idea: enroll everyone.

power_prop_test(p1=.20 * .01, p2=.25 * .01, power=.8)
→ need 280,000 visitors.

Good idea: enroll only those get to the checkout page.

power_prop_test(p1=.20, p2=.25, power=.8)
→ need 2,200 visitors at checkout
→ need 220,000 visitors total (20% decrease in sample size)
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Sometimes it helps to enroll a highly-affected subgroup.

Suppose treatment is expensive, and

• among all users at checkout, 20% complete the purchase;
• Among users with at least two items in their cart,
40% complete the purchase.

Idea #1: enroll everyone.

power_prop_test(p1=.20, p2=.25, power=.8)
→ need 2,200 visitors.

Idea #2: enroll only those with two items.

power_prop_test(p1=.40, p2=.50, power=.8)
→ need 770 visitors at checkout
(65% decrease in enrolled sample size)
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Focusing on a subgroup may help internal validity,
but hurt external validity.

Internal validity: are my conclusions valid for enrolled
subjects?

External validity: do my conclusions generalize to other
groups?

Sometimes a difficult tradeoff.
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Choosing an outcome metric
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Imagine we’re testing changes to a search ranking algorithm.
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How should we evaluate search quality?

We need a metric to run an experiment.

We’d like to improve market share:
# queries to our search engine
# queries to all search engines

We can’t measure the denominator. So just use the numerator?
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Finding the right metric isn’t easy!

Kohavi, Deng, et al. (2012): a buggy experiment showing very
poor search results caused

• 10% liǕt in queries per user, and
• 30% liǕt in revenue per user!

What happened here?

• Bad results → issue more queries
• Bad organic results → more clicks on ads
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Queries
Month =

Users
Month × Sessions

User × Queries
Session

• # Users is fixed by design.
• Sessions / User seems the best metric.
• Queries / Session is difficult to interpret.

From Kohavi, Deng, et al. (2012).
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What if I want to look at multiple outcome metrics?

My suggestion for multiple outcome metrics:

• Pick one primary metric—a “key performance indicator” or
KPI.

• If the others are important, correct for multiple testing.
• Otherwise, look at them, but educate yourself and others
about multiplicity.
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1. The need for randomized experiments

2. Design issues

3. Sequential experimentation

• A lesson about random walks
• Repeated looks inflate error
• Simulation-based sequential p-values
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A lesson about random walks
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The coin-flipping game: long leads

Every day for one year, I flip a fair coin.

• Heads → you pay me $1.
• Tails → I pay you $1.

What’s the chance that, aǕter the first eight days,
one of us stays in the lead the entire rest of the year?

(a) One in 10,000
(b) One in 1,000
(c) One in 100
(d) One in 10
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One random walk path
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Random walks with long leads
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10 / 100 walks have one leader for the last 357 / 365 days. 30



Random walks with a dominant leader
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15 / 100 walks have one player ahead any 357 / 365 days. 31



A highly uneven outcome is the norm, not the exception.

0 100 200 300
Number of days I was ahead

(These are called arcsine laws.) 32



What’s going on here?

In a random walk, outcomes at different times are
highly correlated.

Our usual notions about long-run behavior don’t apply.

These examples are based on Feller (1971, §III.4).
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Repeated looks inflate error
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Sequential monitoring of A/B tests
is desirable but problematic.

From https://crozdesk.com/analytics-intelligence/a-b-testing-software/optimizely
34



Testing a coin for fairness

How to determine if a coin is fair? Start flipping it!

T H T

H H T H H H T H H T T H T H T H H H T H H ...

Is 15 / 24 heads surprising? This is what p-values are for.

35



Testing a coin for fairness

How to determine if a coin is fair? Start flipping it!

T H T H H T H H H

T H H T T H T H T H H H T H H ...

Is 15 / 24 heads surprising? This is what p-values are for.

35



Testing a coin for fairness

How to determine if a coin is fair? Start flipping it!

T H T H H T H H H T H H T T H T H T H H H T H H ...

Is 15 / 24 heads surprising? This is what p-values are for.

35



Testing a coin for fairness

How to determine if a coin is fair? Start flipping it!

T H T H H T H H H T H H T T H T H T H H H T H H ...

Is 15 / 24 heads surprising?

This is what p-values are for.

35



Testing a coin for fairness

How to determine if a coin is fair? Start flipping it!

T H T H H T H H H T H H T T H T H T H H H T H H ...

Is 15 / 24 heads surprising? This is what p-values are for.

35



p-values control the chance of false discovery

The guarantee of a hypothesis test:

“If the treatment has no effect,
the chance of false discovery is at most 5%.”

The key property of p-values: if the treatment has no effect,

P(p-value ≤ 0.05) ≤ 0.05.

Declare a discovery when p-value ≤ 0.05
→ chance of false discovery is at most 5%.
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One path of p-values from a fair coin.
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With no bias, we only rarely conclude the coin is biased.
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Continuous monitoring of fixed-sample p-values
breaks the guarantee.
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Here, with a fair coin, 35% of paths reach significance. 39



For a fair coin, chance of false discovery grows arbitrarily large
with enough flips.
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Sequential monitoring happens all over the place.

• In A/B testing.
• In clinical trials.
• In lab experments.
• ...
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Simulation-based sequential p-values
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Reminder: fixed-sample p-values by simulation

Standard p-value to test whether a coin is fair:

• Flip the coin 1,000 times.
• Compute tobs1000 = # heads - # tails aǕter 1,000 flips.
• Simulate T1000 many times and estimate

p-value = P(|T10,000| ≥ tobs10,000).

t 1000
obs

−100 −50 0 50 100
T 1000

Example: tobs1000 = 70 → p ≈ 0.029.
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Now we have a sequence of test statistics.

Now say we want to compute a p-value aǕter every 100 flips.

We need to consider the sequence of test statistics

T100, T200, . . . , T900, T1000.

For a fair coin, Tn is a sum of n i.i.d. random variables,
each taking values ±1 with probability 1/2 each.

The variance of this ±1 random variable is one.
⇒ The variance of Tn is n (standard deviation

√
n).

⇒ The variance of Tn/
√
n is 1.

43
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We’ll use amaximal test statistic to compute sequential p-values.

Now we’ll simulate the test statistic

T⋆1000 = max

{
T100√
100

,
T200√
200

, . . . ,
T900√
900

,
T1000√
1000

}
.

Our sequential procedure:

• AǕter every 100 flips, compute

tobsn =
# heads - # tails aǕter n flips√

n
t⋆n = max

{
tobs100 , tobs200, . . . , tobsn

}
.

• Simulate T⋆1000 many times and estimate

p-value = P(|T⋆1000| ≥ t⋆n).
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Example: t⋆1000 = 70/
√
1000 → p ≈ 0.054.

(Compare to p ≈ 0.029 earlier.)

tn
*

−2.5 0.0 2.5
T 1000
*
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We can look at these p-values repeatedly.

Now we can compute a p-value aǕter every 100 flips, stop as
soon as p ≤ 0.05, and still have the guarantee

P(any p-value ≤ 0.05) ≤ 0.05

if the coin is fair.

If the coin is biased, we have a chance to stop early.

Remember:

• We must choose the maximum sample size in advance
(here, 1,000).

• We can only look as oǕten as we do in the simulation
(here, every 100 flips).
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Recap

1. Randomized assignment

• protects from bias, and
• justifies probability calculations.

2. Before running an experiment, carefully choose

• the unit of randomization (and analysis!),
• the enrolled population, and
• the outcome metric.

3. If you want to monitor sequentially, use sequential methods!
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Thank you.
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