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HP Face-Tracking Webcams Don't Recognize Black
People

Adam Frucci
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‘A white mask worked better: why
algorithms are not colour blind

‘. When Joy Buolamwini found that a robot recognised her face better when she
wore a white mask, she knew a problem needed fixing
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Graduation

Google Photos Mistakenly Labels Black People ‘Gorillas’

BY CONOR DOUGHERTY JULY 1,20157:01PM W 41
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Data science is everywhere...
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Data Science Life Cycle

Context

Question

Refine Question to an one
answerable with data

Model evaluation
Prediction error

Design
Data Collection
Data Cleaning

Modeling

Test-train split

Loss function choice

Feature engineering
Transformations,
Dummy Variables

Model selection
Best subset regression
Cross-Validation



Context & Refinement

Extreme Digital Vetting of Visitors
to the U.S. Moves Forward Under a
New Name

ICE officials have invited tech companies, including Microsoft, to develop
algorithms that will track visa holders’ social media activity.




Context & Refinement

A Stanford scientist says he built a gaydar
using “the lamest” Al to prove a point



Male

Female

Composite heterosexual faces

Composate gay faces

Average facial landmarks
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Proxies



Automated Inference on Criminality using Face Images

Xiaolin Wu Xi Zhang
McMaster University Shanghai Jiao Tong University
Shanghai Jiao Tong University zhangxi.19930818@situ.edu.cn

xwu5108gmail .com



Data Collection
Street Bump
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Data Collection




http://bit.ly/ds100-sp18-eth



Number of Days

From Lum, Kristian, and William Isaac.
no. 5 (2016): 14-19.




Data Cleaning =
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Data Cleaning




Data Cleaning




Test-Train Split
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Loss Function Choice E
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There s software used across the country to predict future criminals. And it's
biased against blacks
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Probability of two-year recidivism
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Hypothetical conditional effect plot, biased against blacks
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So why does ProPublica think
COMPAS is biased?
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Feature Engineering

Subspace 3

Cluster 3
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Feature Engineering




Model Selection
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Model Evaluation

Age of Miss America
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So what do we do about this?



Ethical Lessons

1. Know what the data are telling you
* Understand your model, and validate it
* Involve domain experts; “raw data” is an oxymoron
 Communicate not just model capabilities, but also limits and assumptions

2. Data about people are about people
* The data do not exist on their own, someone made them

3. Always consider why your model might be wrong in systematic ways

* Don’t just trust the technology, make it trustworthy
* Close the data science lifecycle: the world changes, and so should your models



Ethics beyond the Data Science
Lifecycle



Should we deploy technology at all?
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When is it ethical to collect data?
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GOOGLE BUSTED WITH HAND IN
SAFARI-BROWSER COORIE JAR




When is it ethical to collect sensitive data?

* Without knowing sensitive attributes, it’s not possible to know how to
make good decisions.

* E.g., in a credit-granting context, there’s no reason to believe that qualified
minority applicants will be similar to qualified members of the majority

e But having sensitive data means it can be repurposed for other uses



Inclusion and Representation




Resources

* Take a course at Berkeley on people and technology

* Visit https://fatml.org and https://fatconference.org
* Reading list
* Principles for Accountable Algorithms

* Books
* Weapons of Math Destruction, by Cathy O’Neil
* How to Lie With Statistics, by Darrell Huff

* Courses around the world: tinyurl.com/ethics-classes


https://fatml.org/
https://fatconference.org/

“Remember that all models are wrong;

the practical question is how wrong do

they have to be to not be useful.”
-George E. P. Box




