# Big Data Analytics Map-Reduce and Spark

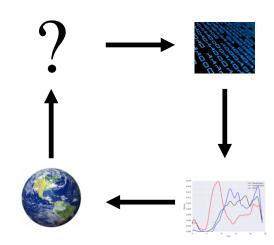
Slides by:

Joseph E. Gonzalez

jegonzal@cs.berkeley.edu

Guest Lecturer:

Vikram Sreekanti



## From SQL to Big Data (with SQL)

- > A few weeks ago...
  - Databases
  - > (Relational) Database Management Systems
  - SQL: Structured Query Language
- > Today
  - More on databases and database design
  - > Enterprise data management and the data lake
  - Introduction to distributed data storage and processing
  - > Spark

## Data in the Organization

A little bit of buzzword bingo!

## Inventory



How we like to think of data in the organization

#### The reality...















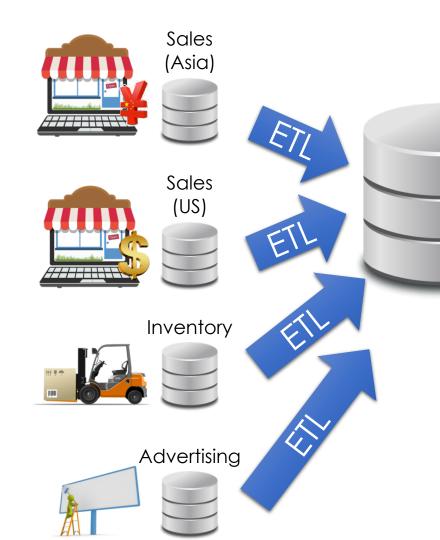




## Operational Data Stores

- > Capture the now
- Many different databases across an organization
- > Mission critical... be careful!
  - Serving live ongoing business operations
  - Managing inventory
- Different formats (e.g., currency)
  - > Different schemas (acquisitions ...)
- Live systems often don't maintain history

We would like a consolidated, clean, historical snapshot of the data.



#### Data Warehouse

Collects and organizes historical data from multiple sources

Data is *periodically* **ETL**ed into the data warehouse:

- > **Extracted** from remote sources
- > Transformed to standard schemas
- Loaded into the (typically) relational (SQL) data system

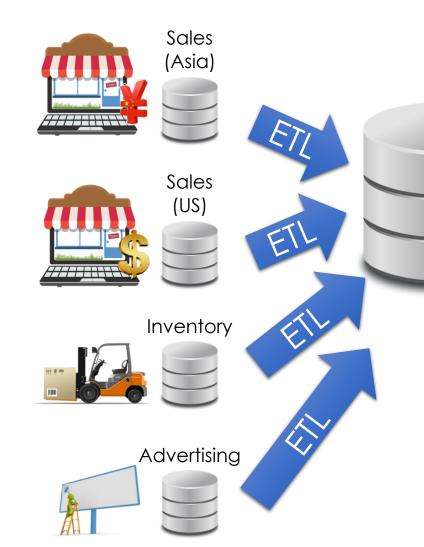
## $\underline{\mathbf{E}}$ xtract $\rightarrow \underline{\mathbf{T}}$ ransform $\rightarrow \underline{\mathbf{L}}$ oad (ETL)

Extract & Load: provides a snapshot of operational data

- > Historical snapshot
- > Data in a single system
- > Isolates analytics queries (e.g., Deep Learning) from business critical services (e.g., processing user purchase)
- Easy!

**Transform:** clean and prepare data for analytics in a unified representation

- ➤ Difficult → often requires specialized code and tools
- > Different schemas, encodings, granularities



#### Data Warehouse

Collects and organizes historical data from multiple sources

How is data organized in the Data Warehouse?

## Example Sales Data

|   |    | pname                                | category   | price  | qty    | date                 | day  | city  | state | country |
|---|----|--------------------------------------|------------|--------|--------|----------------------|------|-------|-------|---------|
|   |    | Corn                                 | Food       | 25     | 25     | 3/30/16              | Wed. | Omaha | NE    | USA     |
|   |    | Corn                                 | Food       | 25     | 8      | 3/31/16              | Thu. | Omaha | NE    | USA     |
|   |    | Corn                                 | Food       | 25     | 15     | 4/1/16               | Fri. | Omaha | NE    | USA     |
| _ | D! | Galaxy                               | Phones     | 18     | 30     | 1/30/16              | Wed. | Omaha | NE    | USA     |
|   | >  | table: m<br>Substantial<br>and acces | redundan   |        |        | ows<br>sive to store | Thu. | Omaha | NE    | USA     |
|   |    | Make misto                           | akes while | updati | ing    |                      | Fri. | Omaha | NE    | USA     |
|   |    | uld we or<br>ciently?                | ganize th  | ne do  | ıta mo | ore 0/16             | Wed. | Omaha | NE    | USA     |
|   |    | Peanuts                              | Food       | 2      | 45     | 3/31/16              | Thu. | Seoul |       | Korea   |

#### Multidimensional Data Model

#### Sales Fact Table

| pid | timeid | locid | sales |
|-----|--------|-------|-------|
| 11  | 1      | 1     | 25    |
| 11  | 2      | 1     | 8     |
| 11  | 3      | 1     | 15    |
| 12  | 1      | 1     | 30    |
| 12  | 2      | 1     | 20    |
| 12  | 3      | 1     | 50    |
| 12  | 1      | 1     | 8     |
| 13  | 2      | 1     | 10    |
| 13  | 3      | 1     | 10    |
| 11  | 1      | 2     | 35    |
| 11  | 2      | 2     | 22    |
| 11  | 3      | 2     | 10    |
| 12  | 1      | 2     | 26    |

#### Locations

| locid | city     | state    | country |
|-------|----------|----------|---------|
| 1     | Omaha    | Nebraska | USA     |
| 2     | Seoul    |          | Korea   |
| 5     | Richmond | Virginia | USA     |

#### **Products**

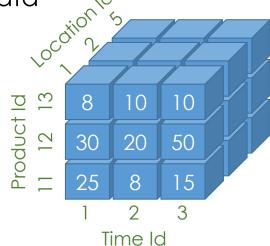
| pid | pname    | category | price |
|-----|----------|----------|-------|
| 11  | Corn     | Food     | 25    |
| 12  | Galaxy 1 | Phones   | 18    |
| 13  | Peanuts  | Food     | 2     |

#### Time

| timeid | Date    | Day  |
|--------|---------|------|
| 1      | 3/30/16 | Wed. |
| 2      | 3/31/16 | Thu. |
| 3      | 4/1/16  | Fri. |

Dimension Tables





#### Multidimensional Data Model

#### Sales Fact Table

| pid | timeid | locid | sales |
|-----|--------|-------|-------|
| 11  | 1      | 1     | 25    |
| 11  | 2      | 1     | 8     |
| 11  | 3      | 1     | 15    |
| 12  | 1      | 1     | 30    |
| 12  | 2      | 1     | 20    |
| 12  | 3      | 1     | 50    |
| 12  | 1      | 1     | 8     |
| 13  | 2      | 1     | 10    |
| 13  | 3      | 1     | 10    |
| 11  | 1      | 2     | 35    |
| 11  | 2      | 2     | 22    |
| 11  | 3      | 2     | 10    |
| 12  | 1      | 2     | 26    |

#### Locations

| locid | city     | state    | country |
|-------|----------|----------|---------|
| 1     | Omaha    | Nebraska | USA     |
| 2     | Seoul    |          | Korea   |
| 5     | Richmond | Virginia | USA     |

#### **Products**

| pid | pname    | category | price |
|-----|----------|----------|-------|
| 11  | Corn     | Food     | 25    |
| 12  | Galaxy 1 | Phones   | 18    |
| 13  | Peanuts  | Food     | 2     |

#### Time

| timeid | Date    | Day  |
|--------|---------|------|
| 1      | 3/30/16 | Wed. |
| 2      | 3/31/16 | Thu. |
| 3      | 4/1/16  | Fri. |

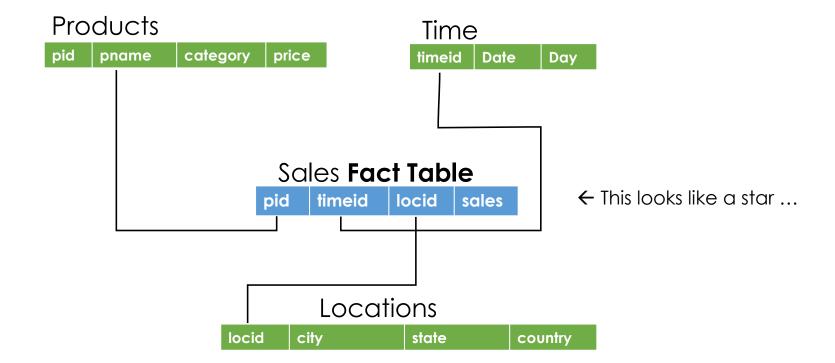
- Fact Table
  - Minimizes redundant info
  - Reduces data errors

**Dimension** 

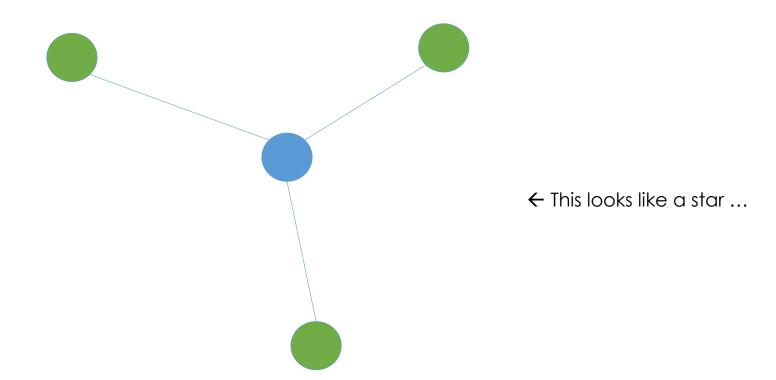
**Tables** 

- Dimensions
  - Easy to manage and summarize
  - ➤ Rename: Galaxy1 → Phablet
- Normalized Representation
- How do we do analysis?
  - Joins!

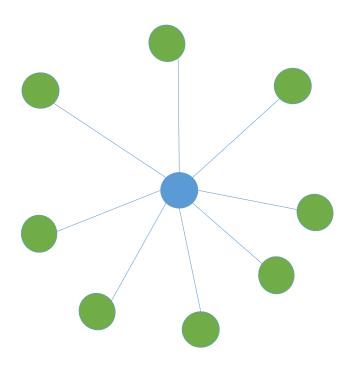
#### The Star Schema



#### The Star Schema

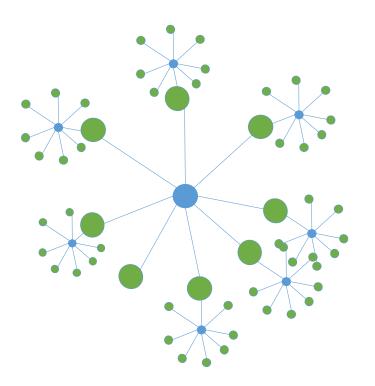


#### The Star Schema



← This looks like a star ...

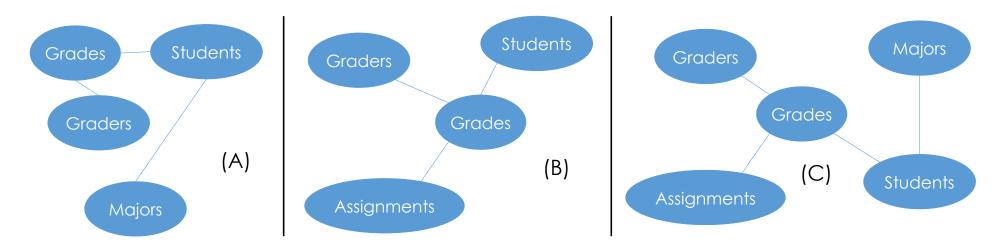
#### The Snowflake Schema



← This looks like a snowflake ...?

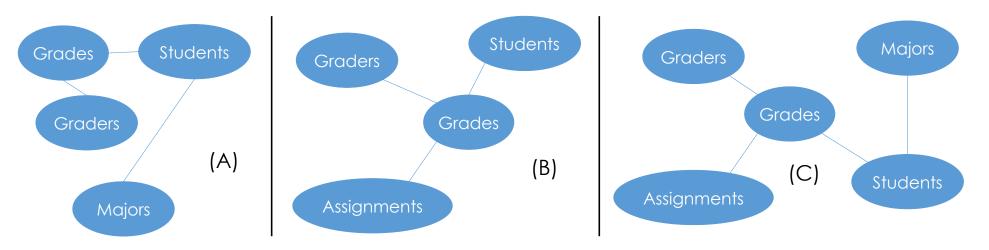
# Which schema illustration would best organize this data?

http://bit.ly/ds100-sp18-star





Grades(calid, asg\_name, grader\_id, score)
Graders(grader\_id, grader\_name)
Student(calid, name, year, major\_name, avg\_grade)
Majors(major\_name, grade\_req)
Assignments(asg\_name, asg\_pts)



## Online Analytics Processing (OLAP)

Users interact with multidimensional data:

- Constructing ad-hoc and often complex SQL queries
- Using graphical tools that to construct queries
- Sharing views that summarize data across important dimensions

## Cross Tabulation (Pivot Tables)

| Item | Color | Quantity |   |      |      |      | ltem |     |
|------|-------|----------|---|------|------|------|------|-----|
| Desk | Blue  | 2        |   |      |      | Desk | Sofa | Sum |
| Desk | Red   | 3        |   | _    | Blue | 2    | 4    | 6   |
| Sofa | Blue  | 4        | , | olor | Red  | 3    | 5    | 8   |
| Sofa | Red   | 5        |   | Ö    | Sum  | 5    | 9    | 14  |

- > Aggregate data across pairs of dimensions
  - Pivot Tables: graphical interface to select dimensions and aggregation function (e.g., SUM, MAX, MEAN)
  - > GROUP BY queries
- Related to contingency tables and marginalization in stats.
- What about many dimensions?

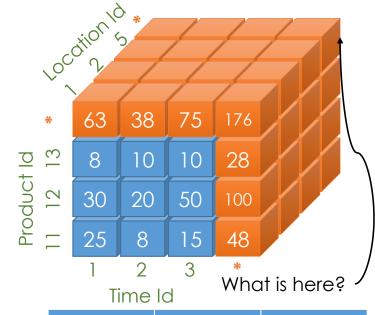
### Cube Operator

Generalizes crosstabulation to higher dimensions.

#### ≽In SQL:

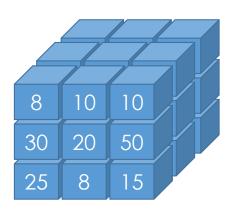
**SELECT** Item, Color, **SUM**(Quantity) **AS** QtySum **FROM** Furniture GROUP BY <u>CUBE</u> (Item, Color);

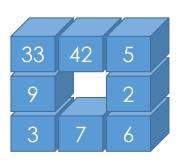
| Item | Color | Quantity |
|------|-------|----------|
| Desk | Blue  | 2        |
| Desk | Red   | 3        |
| Sofa | Blue  | 4        |
| Sofa | Red   | 5        |



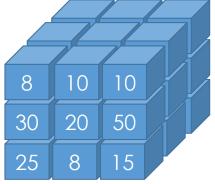
| Item | Color | QtySum |
|------|-------|--------|
| Desk | Blue  | 2      |
| Desk | Red   | 3      |
| Desk | *     | 5      |
| Sofa | Blue  | 4      |
| Sofa | Red   | 5      |
| Sofa | *     | 9      |
| *    | *     | 14     |
| *    | Blue  | 6      |
| *    | Red   | 8      |

> Slicing: selecting a value for a dimension



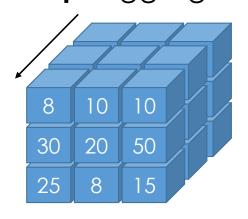


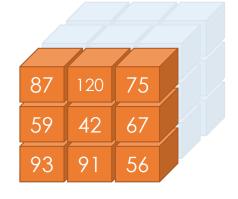
> Dicing: selecting a range of values in multiple dimension



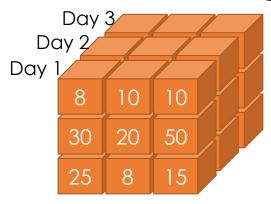


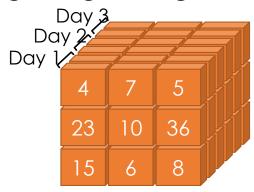
> Rollup: Aggregating along a dimension





> Drill-Down: de-aggregating along a dimension

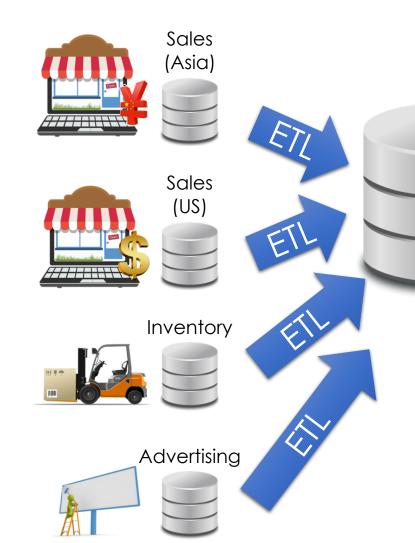




#### Reporting and Business Intelligence (BI)

- > Use high-level tools to interact with their data:
  - Automatically generate SQL queries
    - > Queries can get big!
- > Common!





#### Data Warehouse

Collects and organizes historical data from multiple sources

#### So far ...

- > Star Schemas
- Data cubes
- OLAP Queries



#### Data Warehouse

Collects and organizes historical data from multiple sources

How do we deal with semistructured and unstructured data?

Do we really want to force a schema on load?



How do we **clean** and **organize** this data?

Depends on use ...

#### Data Warehouse

Collects and organizes historical data from multiple sources







How do we **load** and **process** this data in a relational system?

Do we re

JOIOS

Depends on use...
Can be difficult...
Requires thought...



Data Lake\*

Store a copy of all the data

- > in one place
- > in its original "natural" form

Enable data consumers to choose how to transform and use data.

> Schema on Read

What could go wrong?

<sup>\*</sup>Still being defined...[Buzzword Disclaimer]

#### The Dark Side of Data Lakes

- Cultural shift: Curate > Save Everything!
  - Noise begins to dominate signal
- Limited data governance and planning Example: hdfs://important/joseph\_big\_file3.csv\_with\_json
  - What does it contain?
  - When and who created it?
- No cleaning and verification -> lots of dirty data
- New tools are more complex and old tools no longer work

Enter the data scientist



### A Brighter Future for Data Lakes

#### Enter the data scientist

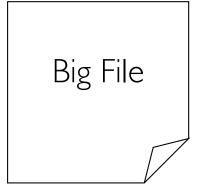
- Data scientists bring new skills
  - Distributed data processing and cleaning
  - Machine learning, computer vision, and statistical sampling
- Technologies are improving
  - SQL over large files
  - Self describing file formats & catalog managers
- Organizations are evolving
  - Tracking data usage and file permissions
  - New job title: data engineers



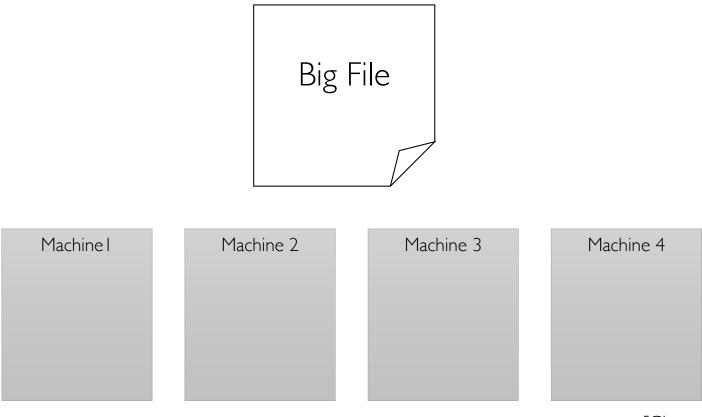
# How do we **store** and **compute** on large unstructured datasets

- > Requirements:
  - Handle very large files spanning multiple computers
  - > Use cheap commodity devices that fail frequently
  - Distributed data processing quickly and easily
- > Solutions:
  - ➤ Distributed file systems → spread data over multiple machines
    - ➤ Assume machine failure is common → redundancy
  - Distributed computing -> load and process files on multiple machines concurrently
    - ➤ Assume machine **failure** is common → **redundancy**
    - ➤ Functional programming computational pattern → parallelism

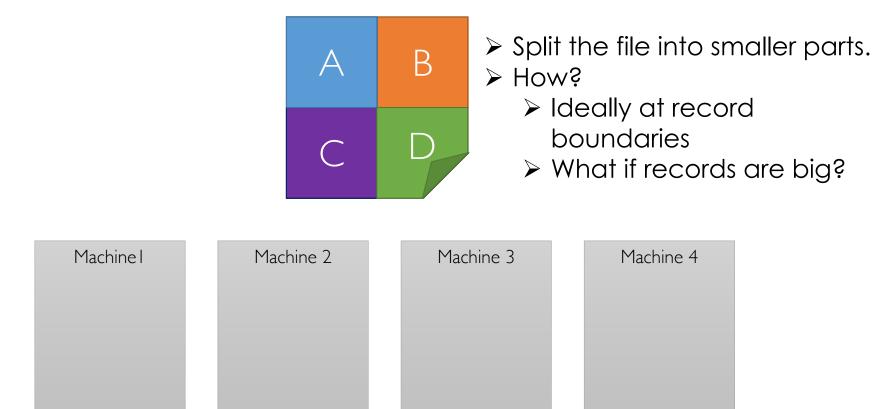
## Distributed File Systems Storing very large files



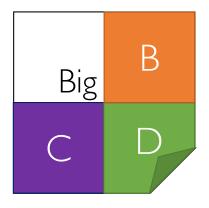
How do we **store** and **access** very **large files** across **cheap** commodity devices?



[Ghemawat et al., SOSP'03]



[Ghemawat et al., SOSP'03]



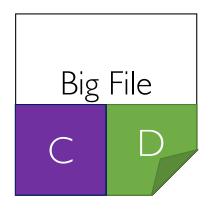




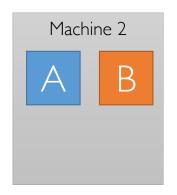




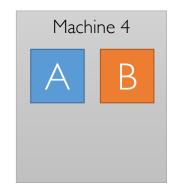
[Ghemawat et al., SOSP'03]



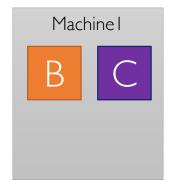


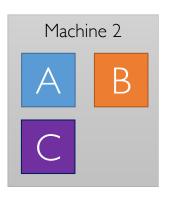




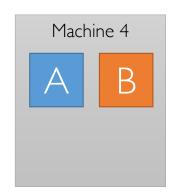


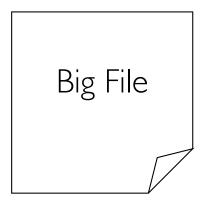


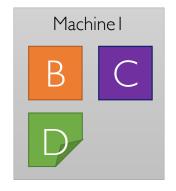


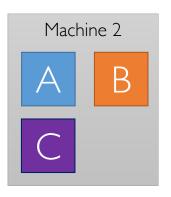


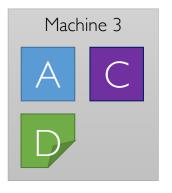


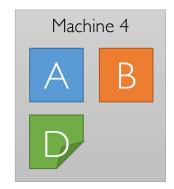






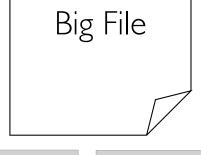


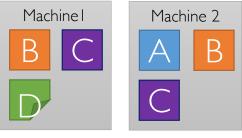




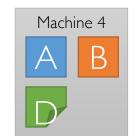
- > Split large files over multiple machines
  - > Easily support massive files spanning machines
- Read parts of file in parallel
  - Fast reads of large files
- Often built using cheap commodity storage devices

Cheap commodity storage devices will fail!

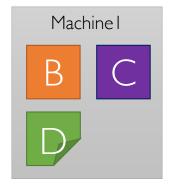


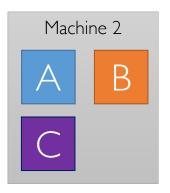


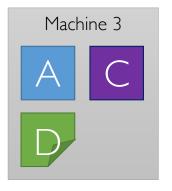


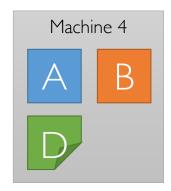




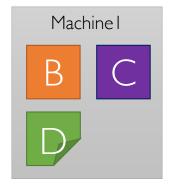


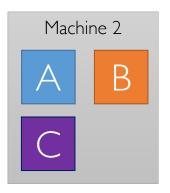


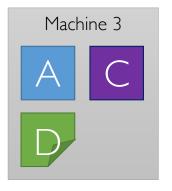


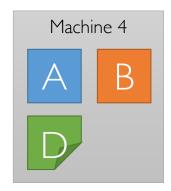


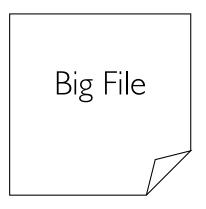


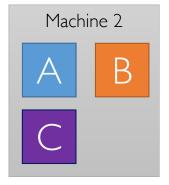


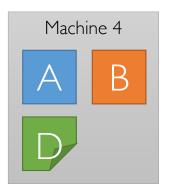


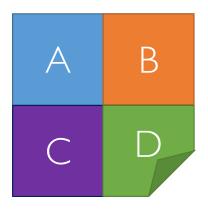


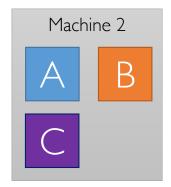


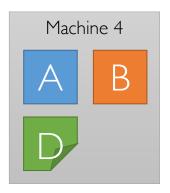






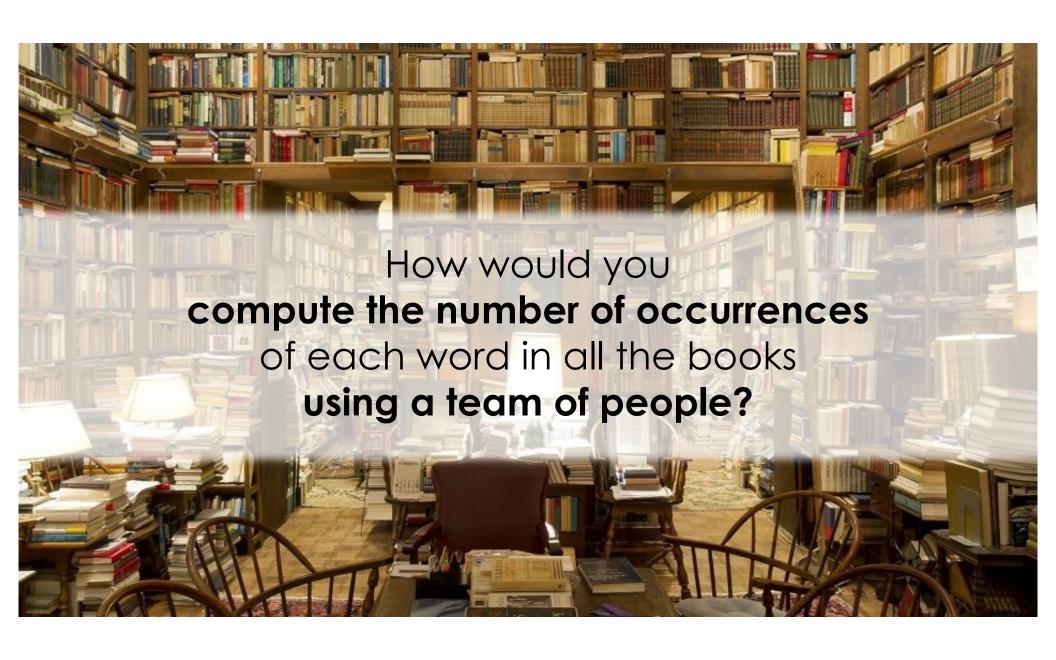






#### Map-Reduce Distributed Aggregation

Computing are very large files









2) Compute Counts Locally

| Word  | Count |
|-------|-------|
| Apple | 2     |
| Bird  | 7     |
|       |       |

| Word  | Count |
|-------|-------|
| Apple | 0     |
| Bird  | 1     |
|       |       |



1) Divide Books Across Individuals



2) Compute Counts Locally

| Word  | Count |
|-------|-------|
| Apple | 2     |
| Bird  | 7     |
| •••   |       |

3) Aggregate Tables



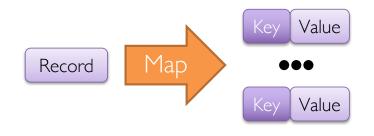
| Word  | Count |
|-------|-------|
| Apple | 2     |
| Bird  | 8     |
| •••   |       |

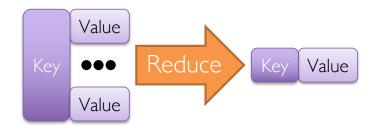




| Word  | Count |
|-------|-------|
| Apple | 0     |
| Bird  | 1     |
|       |       |

#### The Map Reduce Abstraction





Example: Word-Count

```
Map(docRecord) {
  for (word in docRecord) {
    emit (word, 1)
    }
    Key Value
}
```

```
Reduce(word, counts) {
  emit (word, SUM(counts))
}
```

Map: Deterministic

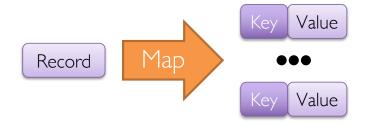
Reduce: Commutative and Associative

[Dean & Ghemawat, OSDI'04]

#### Key properties of Map And Reduce

- > Deterministic Map: allows for re-execution on failure
  - > If some computation is lost we can always re-compute
  - Issues with samples?
- > Commutative Reduce: allows for re-order of operations
  - Reduce(A,B) = Reduce(B,A)
  - $\triangleright$  Example (addition): A + B = B + A
  - Is floating point math commutative?
- > Associative Reduce: allows for regrouping of operations
  - Reduce(Reduce(A,B), C) = Reduce(A, Reduce(B,C))
  - $\triangleright$  Example (max): max(max(A,B), C) = max(A, max(B,C))

#### Executing Map Reduce







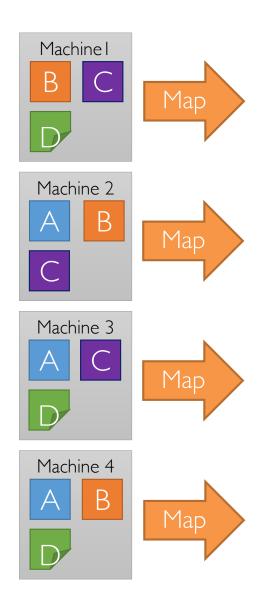




#### Executing Map Reduce

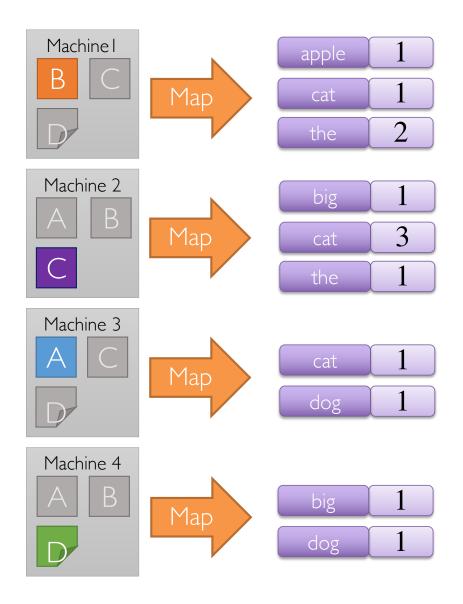


Distributing the Map Function



#### Executing Map Reduce

Distributing the Map Function

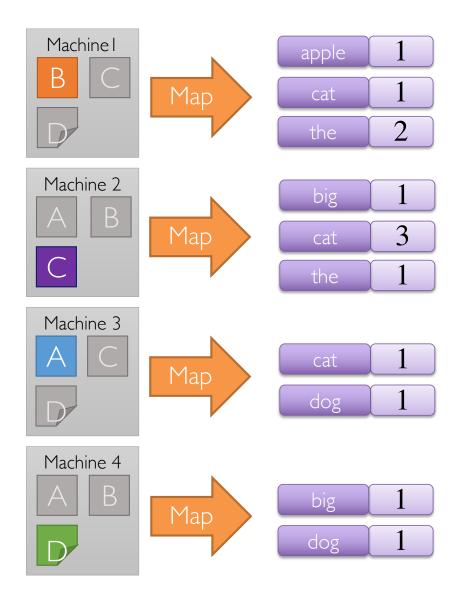


#### Executing Map Reduce

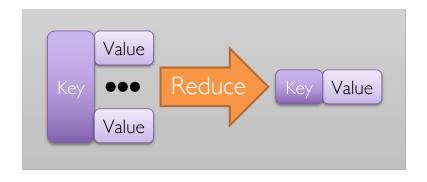
The map function applied to a local part of the big file.

Run in Parallel.

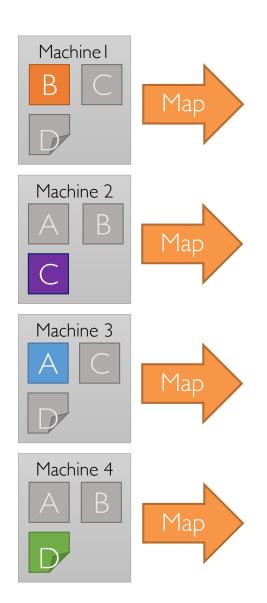
Output is cached for fast recovery on node failure



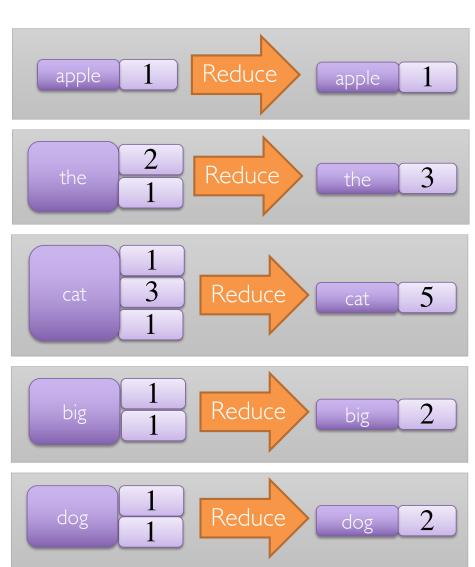
#### Executing Map Reduce

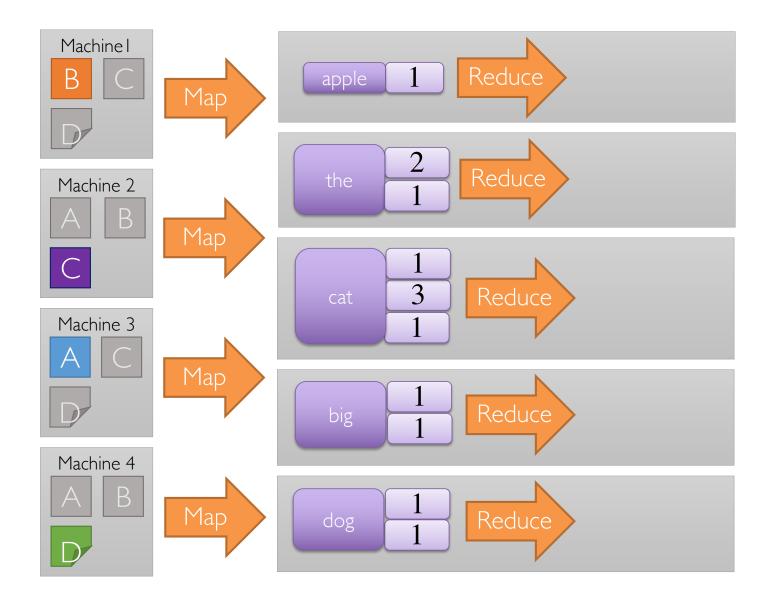


Reduce function can be run on many machines ...

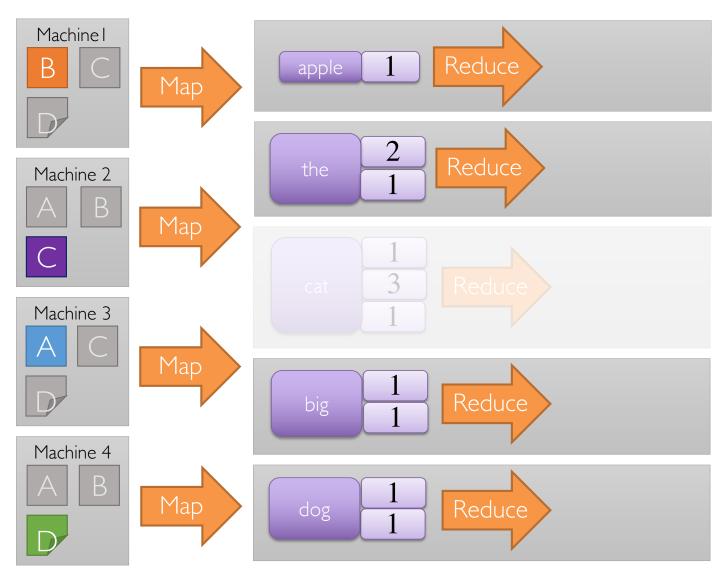


**Run in Parallel** 





# Output File apple 1 the 3 cat 5 big 2 dog 2



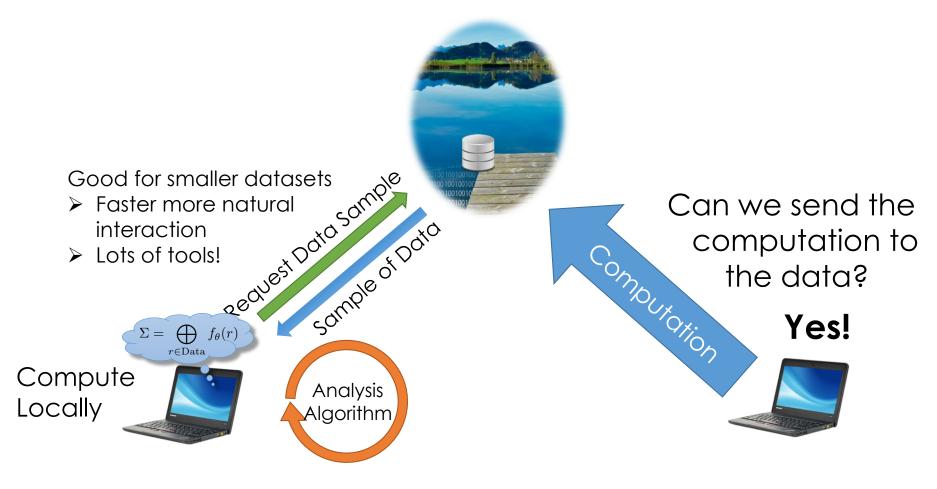


If part of the file or any intermediate computation is lost we can simply **recompute it** without recomputing everything.

## Interacting with Data @ Scale

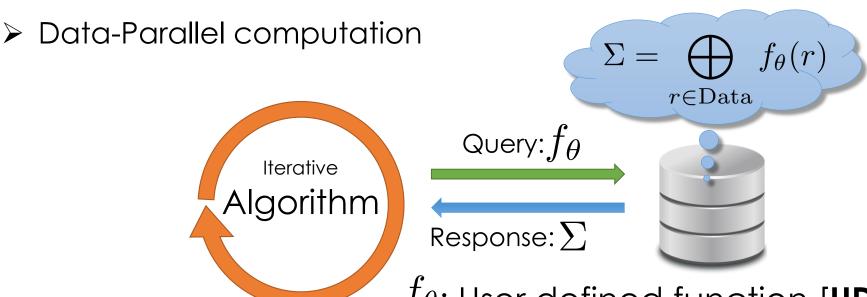
Map-Reduce

#### Interacting With the Data



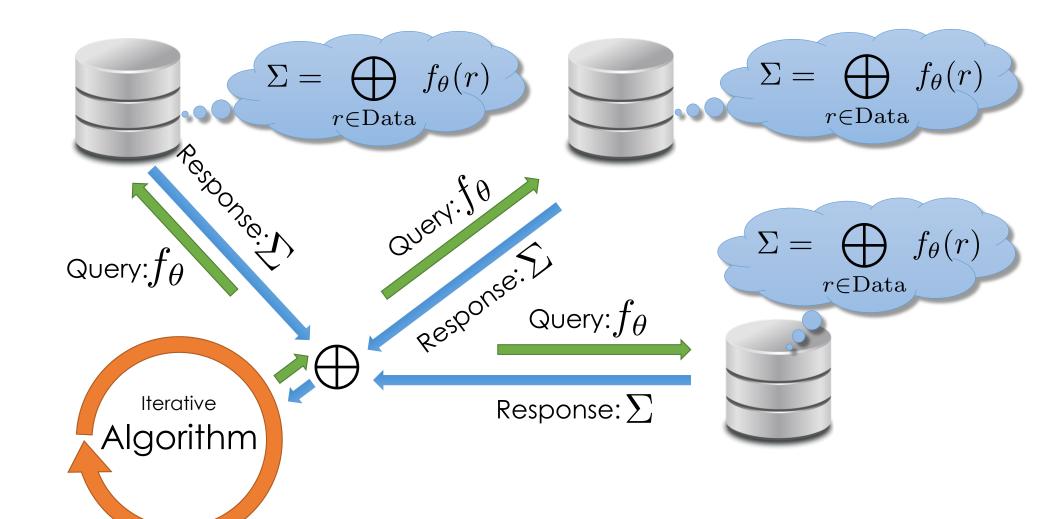
### Statistical Query Pattern Common Machine Learning Pattern

Computing aggregates of user defined functions

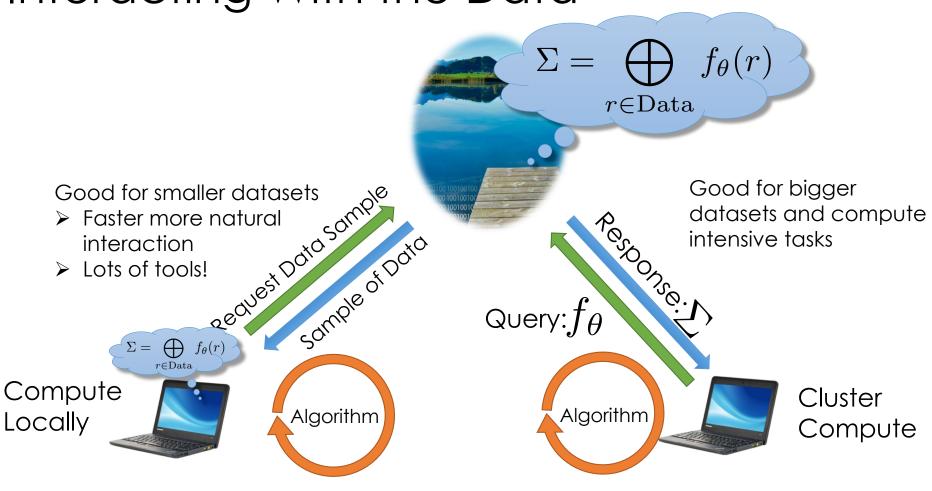


 $f_{\theta}$ : User defined function [**UDF**]

 $\bigoplus$ : User defined aggregate [**UDA**]



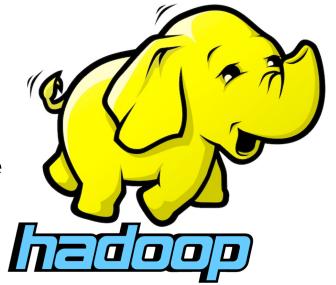
Interacting With the Data



#### Map Reduce Technologies

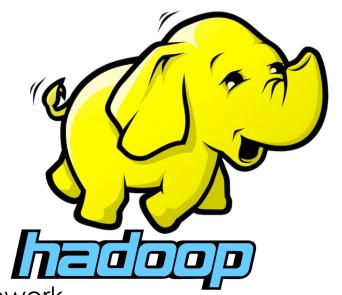
#### Hadoop

- > First open-source map-reduce software
  - Managed by Apache foundation
- > Based on Google's
  - Google File System
  - MapReduce
- > Companies formed around Hadoop:
  - > Cloudera
  - > Hortonworks
  - ➤ MapR



#### Hadoop

- > Very active open source ecosystem
- > Several key technologies
  - > HDFS: Hadoop File System
  - > MapReduce: map-reduce compute framework
  - > YARN: Yet another resource negotiator
  - ➤ **Hive:** SQL queries over MapReduce
  - **>** ...





## In-Memory Dataflow System Developed at the UC Berkeley AMP Lab

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: cluster computing with working sets. HotCloud' 10

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M.J. Franklin, S. Shenker, I. Stoica. Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing, NSDI 2012



- Parallel execution engine for big data processing
- > General: efficient support for multiple workloads
- **Easy** to use: 2-5x less code than Hadoop MR
  - High level API's in Python, Java, and Scala
- Fast: up to 100x faster than Hadoop MR
  - Can exploit in-memory when available
  - Low overhead scheduling, optimized engine

#### Spark Programming Abstraction

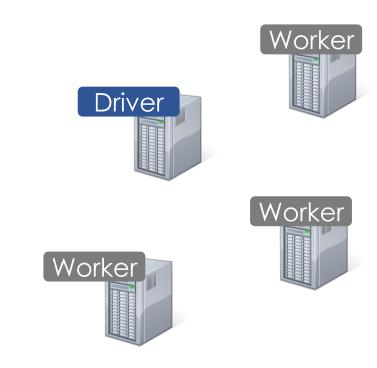
- Write programs in terms of transformations on distributed datasets
- Resilient Distributed Datasets (RDDs)
  - Distributed collections of objects that can stored in memory or on disk
  - Built via parallel transformations (map, filter, ...)
  - Automatically rebuilt on failure

#### RDD: Resilient Distributed Datasets

- Collections of objects partitioned & distributed across a cluster
  - > Stored in RAM or on Disk
  - Resilient to failures
- Operations
  - > Transformations
  - > Actions

## Operations on RDDs

- > Transformations f(RDD) => RDD
  - Lazy (not computed immediately)
  - E.g., "map", "filter", "groupBy"
- > Actions:
  - Triggers computation
  - E.g. "count", "collect", "saveAsTextFile"



Load error messages from a log into memory, then interactively search for various patterns

lines = spark.textFile("hdfs://file.txt")









Load error messages from a log into memory, then interactively search for various patterns

Base RDD

lines = spark.textFile("hdfs://file.txt")









Load error messages from a log into memory, then interactively search for various patterns

```
lines = spark.textFile("hdfs://file.txt")
errors = lines.filter(lambda s: s.startswith("ERROR"))
```





Driver



```
lines = spark.textFile("hdfs://file.txt")
errors = lines.filter(lambda s: s.startswith("ERROR"))
```









```
lines = spark.textFile("hdfs://file.txt")
errors = lines.filter(lambda s: s.startswith("ERROR"))
                                                     Driver
messages = errors.map(lambda s: s.split("\t")[2])
messages.cache()
messages.filter(lambda s: "mysql" in s).count()
```







```
Worker
lines = spark.textFile("hdfs://file.txt")
errors = lines.filter(lambda s: s.startswith("ERROR"))
                                                     Driver
messages = errors.map(lambda s: s.split("\t")[2])
messages.cache()
                                                    Action
messages.filter(lambda s: "mysql" in s).count()
```





Load error messages from a log into memory, then interactively search for various patterns

```
lines = spark.textFile("hdfs://file.txt")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t")[2])
messages.cache()
```



messages.filter(lambda s: "mysql" in s).count()





```
lines = spark.textFile("hdfs://file.txt")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t")[2])
messages.cache()
messages.filter(lambda s: "mysql" in s).count()

Partition 2
Partition 2
```

Load error messages from a log into memory, then interactively search for various patterns

```
lines = spark.textFile("hdfs://file.txt")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t")[2])
messages.cache()
messages.filter(lambda s: "mysql" in s).count()

Worker
Read
Partition 2
```

Read

**HDFS** 

Partitio

**HDFS** 

**Partition** 

```
Cache
lines = spark.textFile("hdfs://file.txt")
errors = lines.filter(lambda s: s.startswith("ERROR"))
                                                       Driver
messages = errors.map(lambda s: s.split("\t")[2])
                                                                           Process
messages.cache()
                                                                          & Cache
                                                                      Cache 2
messages.filter(lambda s: "mysql" in s).count()
                                                     Cache 3
                                                                      Partition 2
                                                   Worker
                                                              Process
                                                                          Process
                                                              & Cache
                                                                          & Cache
                                                  Partition 3
                                                              Data
```

```
Cache 1
                                                                        Worker
lines = spark.textFile("hdfs://file.txt")
errors = lines.filter(lambda s: s.startswith("ERROR"))
                                                              results
                                                                         Partition
                                                       Driver
messages = errors.map(lambda s: s.split("\t")[2])
messages.cache()
                                                                    results
                                                                       Cache 2
messages.filter(lambda s: "mysql" in s).count()
                                                        results
                                                                       Worker
                                                      Cache 3
                                                    Worker
                                                                        Partition 2
                                                   Partition 3
```

```
lines = spark.textFile("hdfs://file.txt")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t")[2])
messages.cache()

messages.filter(lambda s: "mysql" in s).count()
messages.filter(lambda s: "php" in s).count()
```







```
Cache 1
                                                                       Worker
lines = spark.textFile("hdfs://file.txt")
errors = lines.filter(lambda s: s.startswith("ERROR"))
                                                                tasks
                                                                        Partition
                                                       Driver
messages = errors.map(lambda s: s.split("\t")[2])
messages.cache()
                                                                  tasks
                                                                       Cache 2
messages.filter(lambda s: "mysql" in s).count()
                                                                      Worker
                                                        /tasks
messages.filter(lambda s: "php" in s).count()
                                                      Cache 3
                                                                        Partition 2
                                                    Worker
                                                   Partition 3
```

```
Cache
                                                                       Worker
lines = spark.textFile("hdfs://file.txt")
errors = lines.filter(lambda s: s.startswith("ERROR"))
                                                                        Partition
                                                       Driver
messages = errors.map(lambda s: s.split("\t")[2])
                                                                           Process
messages.cache()
                                                                           from
                                                                           Cache
                                                                      Cache 2
messages.filter(lambda s: "mysql" in s).count()
messages.filter(lambda s: "php" in s).count()
                                                     Cache 3
                                                                       Partition 2
                                                              Process
                                                                          Process
                                                              from
                                                                          from
                                                  Partition 3
                                                              Cache
                                                                          Cache
```

```
Cache 1
                                                                       Worker
lines = spark.textFile("hdfs://file.txt")
errors = lines.filter(lambda s: s.startswith("ERROR"))
                                                             results
                                                                        Partition
                                                       Driver
messages = errors.map(lambda s: s.split("\t")[2])
messages.cache()
                                                                    results
                                                                       Cache 2
messages.filter(lambda s: "mysql" in s).count()
                                                       results
                                                                      Worker
messages.filter(lambda s: "php" in s).count()
                                                      Cache 3
                                                    Worker
                                                                        Partition 2
                                                   Partition 3
```

Load error messages from a log into memory, then interactively search for various patterns

```
lines = spark.textFile("hdfs://file.txt")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t")[2])
messages.cache()

messages filter(lambda s: "myssal" in s) sount()
```



messages.filter(lambda s: "mysql" in s).count()
messages.filter(lambda s: "php" in s).count()

Cache your data → Faster Results

Full-text search of Wikipedia

- 60GB on 20 EC2 machines
- 0.5 sec from mem vs. 20s for on-disk





# Abstraction: Dataflow Operators

| map            | reduce      | sample      |
|----------------|-------------|-------------|
| filter         | count       | take        |
| groupBy        | fold        | first       |
| sort           | reduceByKey | partitionBy |
| union          | groupByKey  | mapWith     |
| join           | cogroup     | pipe        |
| leftOuterJoin  | cross       | save        |
| rightOuterJoin | zip         |             |
|                |             |             |

## Abstraction: Dataflow Operators

map

filter

groupBy

sort

union

join

leftOuterJoin

rightOuterJoin

reduce

count

fold

reduceByKey

groupByKey

cogroup

cross

zip

sample

take

first

partitionBy

mapWith

pipe

save

. . .

## Language Support

#### **Python**

```
lines = sc.textFile(...)
lines.filter(lambda s: "ERROR" in s).count()
```

#### Scala

```
val lines = sc.textFile(...)
lines.filter(x => x.contains("ERROR")).count()
```

#### Java

```
JavaRDD<String> lines = sc.textFile(...);
lines.filter(new Function<String, Boolean>() {
   Boolean call(String s) {
    return s.contains("error");
   }
}).count();
```

#### **Standalone Programs**

Python, Scala, & Java

#### Interactive Shells

Python & Scala

#### **Performance**

Java & Scala are faster due to static typing