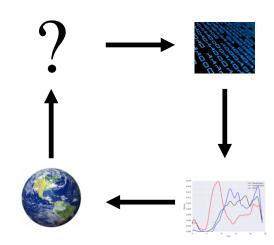
Big Data Analytics Map-Reduce and Spark


Slides by:

Joseph E. Gonzalez

jegonzal@cs.berkeley.edu

Guest Lecturer:

Vikram Sreekanti

From SQL to Big Data (with SQL)

- > A few weeks ago...
 - Databases
 - > (Relational) Database Management Systems
 - SQL: Structured Query Language
- > Today
 - More on databases and database design
 - > Enterprise data management and the data lake
 - Introduction to distributed data storage and processing
 - > Spark

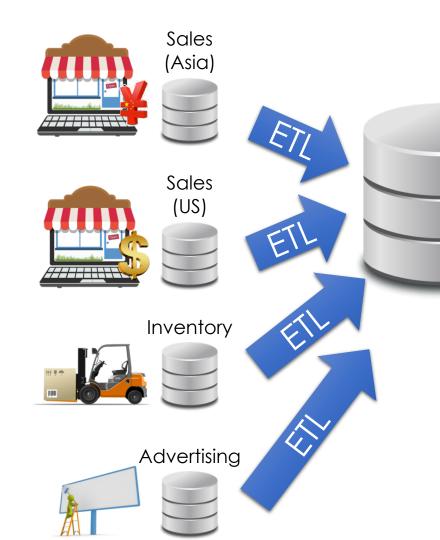
Data in the Organization

A little bit of buzzword bingo!

Inventory

How we like to think of data in the organization

The reality...



Operational Data Stores

- > Capture the now
- Many different databases across an organization
- > Mission critical... be careful!
 - Serving live ongoing business operations
 - Managing inventory
- Different formats (e.g., currency)
 - > Different schemas (acquisitions ...)
- Live systems often don't maintain history

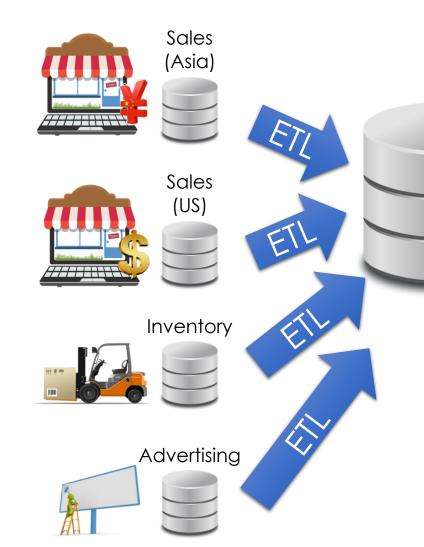
We would like a consolidated, clean, historical snapshot of the data.

Data Warehouse

Collects and organizes historical data from multiple sources

Data is *periodically* **ETL**ed into the data warehouse:

- > **Extracted** from remote sources
- > Transformed to standard schemas
- Loaded into the (typically) relational (SQL) data system


$\underline{\mathbf{E}}$ xtract $\rightarrow \underline{\mathbf{T}}$ ransform $\rightarrow \underline{\mathbf{L}}$ oad (ETL)

Extract & Load: provides a snapshot of operational data

- > Historical snapshot
- > Data in a single system
- > Isolates analytics queries (e.g., Deep Learning) from business critical services (e.g., processing user purchase)
- Easy!

Transform: clean and prepare data for analytics in a unified representation

- ➤ Difficult → often requires specialized code and tools
- > Different schemas, encodings, granularities

Data Warehouse

Collects and organizes historical data from multiple sources

How is data organized in the Data Warehouse?

Example Sales Data

		pname	category	price	qty	date	day	city	state	country
		Corn	Food	25	25	3/30/16	Wed.	Omaha	NE	USA
		Corn	Food	25	8	3/31/16	Thu.	Omaha	NE	USA
		Corn	Food	25	15	4/1/16	Fri.	Omaha	NE	USA
_	D!	Galaxy	Phones	18	30	1/30/16	Wed.	Omaha	NE	USA
	>	table: m Substantial and acces	redundan			ows sive to store	Thu.	Omaha	NE	USA
		Make misto	akes while	updati	ing		Fri.	Omaha	NE	USA
		uld we or ciently?	ganize th	ne do	ıta mo	ore 0/16	Wed.	Omaha	NE	USA
		Peanuts	Food	2	45	3/31/16	Thu.	Seoul		Korea

Multidimensional Data Model

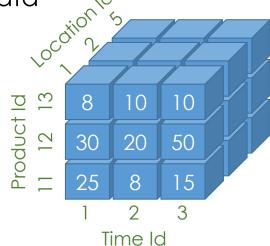
Sales Fact Table

pid	timeid	locid	sales
11	1	1	25
11	2	1	8
11	3	1	15
12	1	1	30
12	2	1	20
12	3	1	50
12	1	1	8
13	2	1	10
13	3	1	10
11	1	2	35
11	2	2	22
11	3	2	10
12	1	2	26

Locations

locid	city	state	country
1	Omaha	Nebraska	USA
2	Seoul		Korea
5	Richmond	Virginia	USA

Products


pid	pname	category	price
11	Corn	Food	25
12	Galaxy 1	Phones	18
13	Peanuts	Food	2

Time

timeid	Date	Day
1	3/30/16	Wed.
2	3/31/16	Thu.
3	4/1/16	Fri.

Dimension Tables

Multidimensional Data Model

Sales Fact Table

pid	timeid	locid	sales
11	1	1	25
11	2	1	8
11	3	1	15
12	1	1	30
12	2	1	20
12	3	1	50
12	1	1	8
13	2	1	10
13	3	1	10
11	1	2	35
11	2	2	22
11	3	2	10
12	1	2	26

Locations

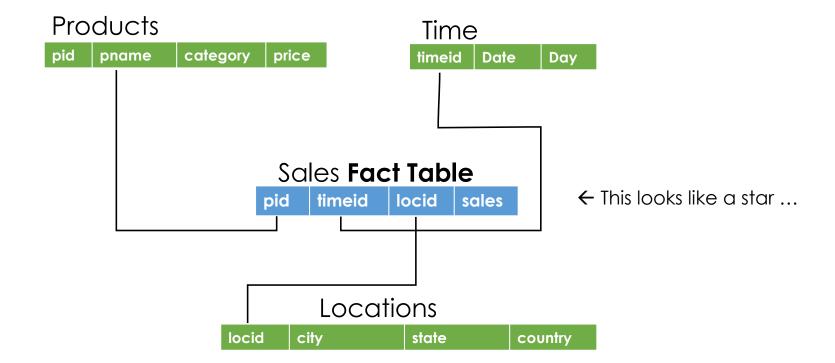
locid	city	state	country
1	Omaha	Nebraska	USA
2	Seoul		Korea
5	Richmond	Virginia	USA

Products

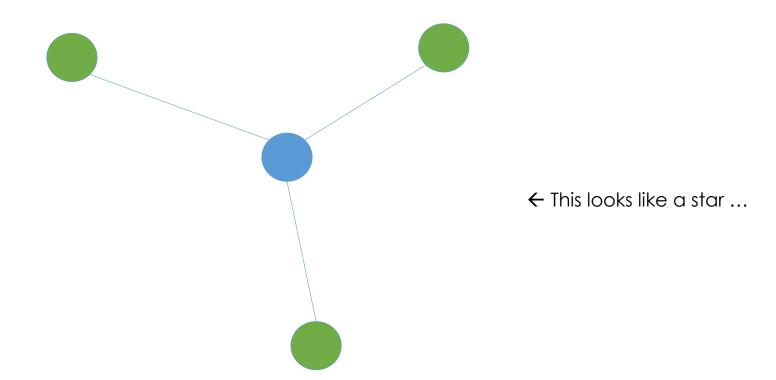
pid	pname	category	price
11	Corn	Food	25
12	Galaxy 1	Phones	18
13	Peanuts	Food	2

Time

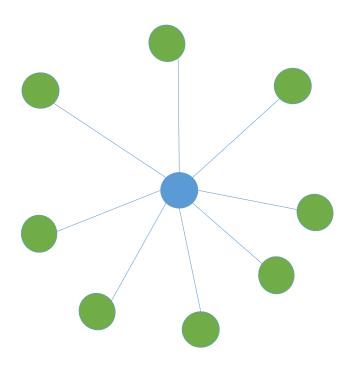
timeid	Date	Day
1	3/30/16	Wed.
2	3/31/16	Thu.
3	4/1/16	Fri.


- Fact Table
 - Minimizes redundant info
 - Reduces data errors

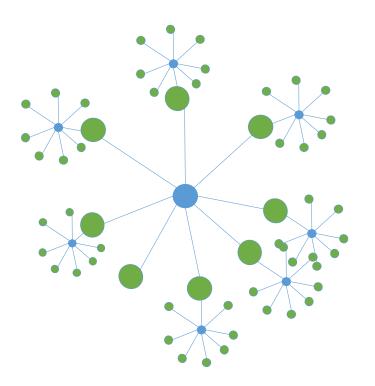
Dimension


Tables

- Dimensions
 - Easy to manage and summarize
 - ➤ Rename: Galaxy1 → Phablet
- Normalized Representation
- How do we do analysis?
 - Joins!

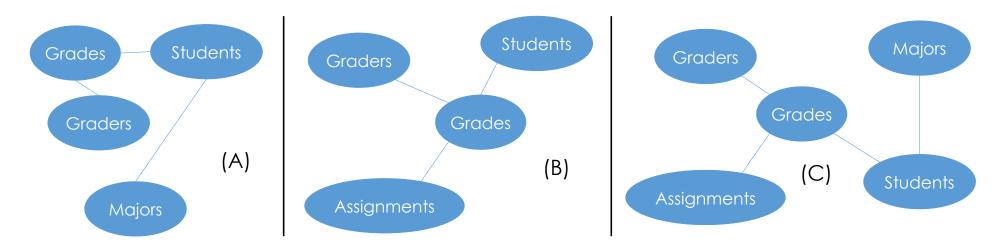

The Star Schema

The Star Schema

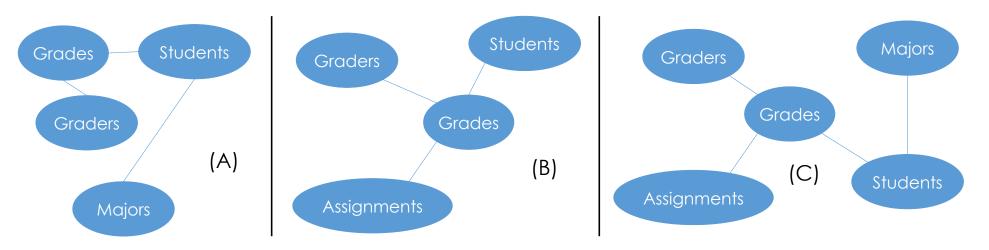


The Star Schema

← This looks like a star ...


The Snowflake Schema

← This looks like a snowflake ...?


Which schema illustration would best organize this data?

http://bit.ly/ds100-sp18-star

Grades(calid, asg_name, grader_id, score)
Graders(grader_id, grader_name)
Student(calid, name, year, major_name, avg_grade)
Majors(major_name, grade_req)
Assignments(asg_name, asg_pts)

Online Analytics Processing (OLAP)

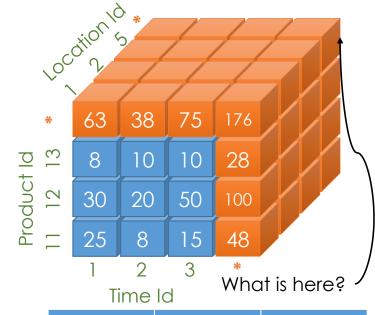
Users interact with multidimensional data:

- Constructing ad-hoc and often complex SQL queries
- Using graphical tools that to construct queries
- Sharing views that summarize data across important dimensions

Cross Tabulation (Pivot Tables)

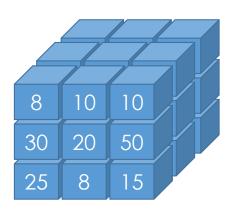
Item	Color	Quantity					ltem	
Desk	Blue	2				Desk	Sofa	Sum
Desk	Red	3		_	Blue	2	4	6
Sofa	Blue	4	,	olor	Red	3	5	8
Sofa	Red	5		Ö	Sum	5	9	14

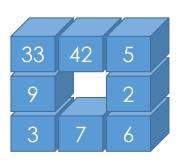
- > Aggregate data across pairs of dimensions
 - Pivot Tables: graphical interface to select dimensions and aggregation function (e.g., SUM, MAX, MEAN)
 - > GROUP BY queries
- Related to contingency tables and marginalization in stats.
- What about many dimensions?

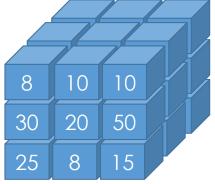

Cube Operator

Generalizes crosstabulation to higher dimensions.

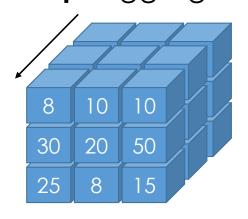
≽In SQL:

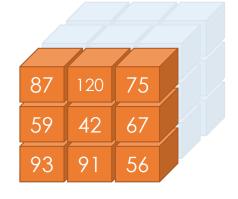

SELECT Item, Color, **SUM**(Quantity) **AS** QtySum **FROM** Furniture GROUP BY <u>CUBE</u> (Item, Color);

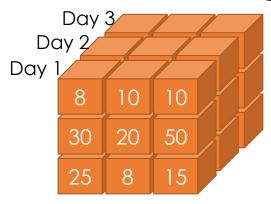

Item	Color	Quantity
Desk	Blue	2
Desk	Red	3
Sofa	Blue	4
Sofa	Red	5

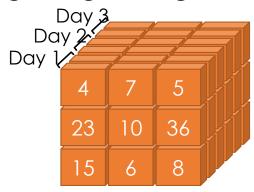

Item	Color	QtySum
Desk	Blue	2
Desk	Red	3
Desk	*	5
Sofa	Blue	4
Sofa	Red	5
Sofa	*	9
*	*	14
*	Blue	6
*	Red	8


> Slicing: selecting a value for a dimension

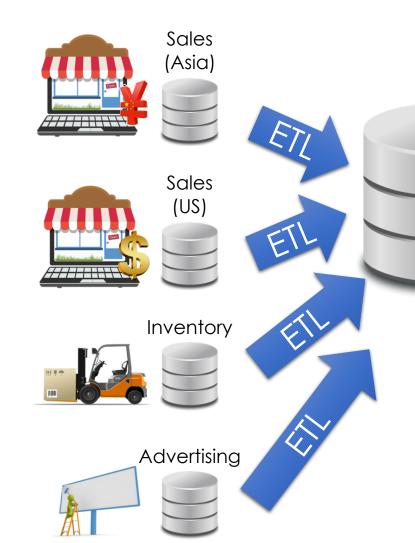



> Dicing: selecting a range of values in multiple dimension




> Rollup: Aggregating along a dimension

> Drill-Down: de-aggregating along a dimension



Reporting and Business Intelligence (BI)

- > Use high-level tools to interact with their data:
 - Automatically generate SQL queries
 - > Queries can get big!
- > Common!

Data Warehouse

Collects and organizes historical data from multiple sources

So far ...

- > Star Schemas
- Data cubes
- OLAP Queries

Data Warehouse

Collects and organizes historical data from multiple sources

How do we deal with semistructured and unstructured data?

Do we really want to force a schema on load?

How do we **clean** and **organize** this data?

Depends on use ...

Data Warehouse

Collects and organizes historical data from multiple sources

How do we **load** and **process** this data in a relational system?

Do we re

JOIOS

Depends on use...
Can be difficult...
Requires thought...

Data Lake*

Store a copy of all the data

- > in one place
- > in its original "natural" form

Enable data consumers to choose how to transform and use data.

> Schema on Read

What could go wrong?

^{*}Still being defined...[Buzzword Disclaimer]

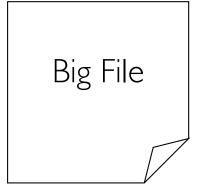
The Dark Side of Data Lakes

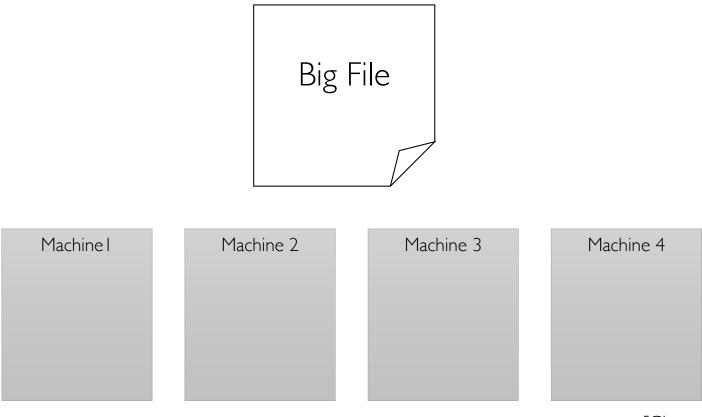
- Cultural shift: Curate > Save Everything!
 - Noise begins to dominate signal
- Limited data governance and planning Example: hdfs://important/joseph_big_file3.csv_with_json
 - What does it contain?
 - When and who created it?
- No cleaning and verification -> lots of dirty data
- New tools are more complex and old tools no longer work

Enter the data scientist

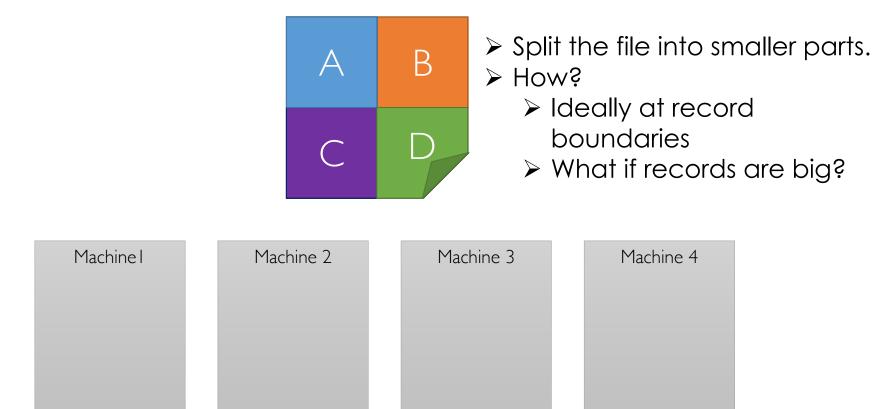
A Brighter Future for Data Lakes

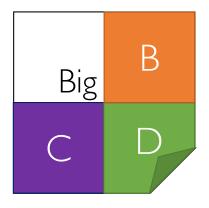
Enter the data scientist


- Data scientists bring new skills
 - Distributed data processing and cleaning
 - Machine learning, computer vision, and statistical sampling
- Technologies are improving
 - SQL over large files
 - Self describing file formats & catalog managers
- Organizations are evolving
 - Tracking data usage and file permissions
 - New job title: data engineers


How do we **store** and **compute** on large unstructured datasets

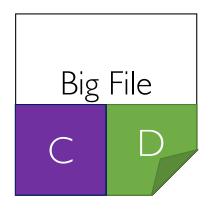
- > Requirements:
 - Handle very large files spanning multiple computers
 - > Use cheap commodity devices that fail frequently
 - Distributed data processing quickly and easily
- > Solutions:
 - ➤ Distributed file systems → spread data over multiple machines
 - ➤ Assume machine failure is common → redundancy
 - Distributed computing -> load and process files on multiple machines concurrently
 - ➤ Assume machine **failure** is common → **redundancy**
 - ➤ Functional programming computational pattern → parallelism

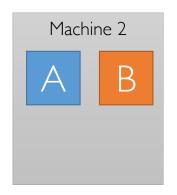

Distributed File Systems Storing very large files

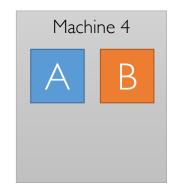

How do we **store** and **access** very **large files** across **cheap** commodity devices?

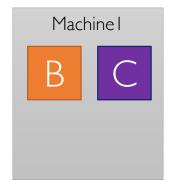
[Ghemawat et al., SOSP'03]

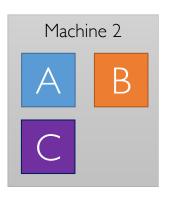
[Ghemawat et al., SOSP'03]

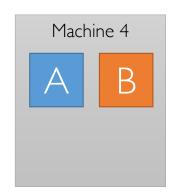


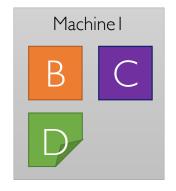


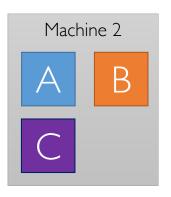

[Ghemawat et al., SOSP'03]

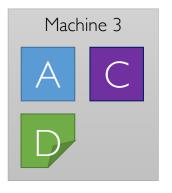


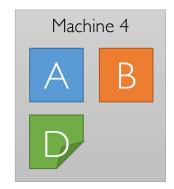


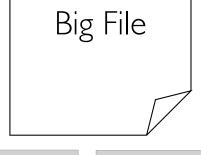


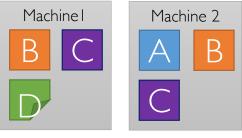


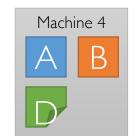




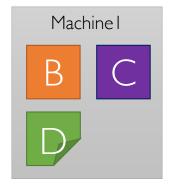


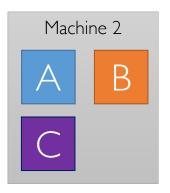


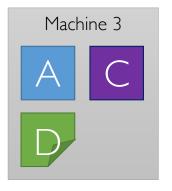


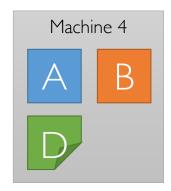

- > Split large files over multiple machines
 - > Easily support massive files spanning machines
- Read parts of file in parallel
 - Fast reads of large files
- Often built using cheap commodity storage devices

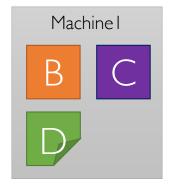
Cheap commodity storage devices will fail!

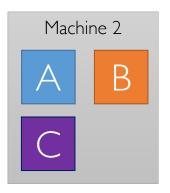


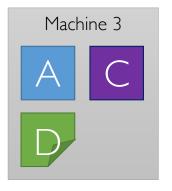


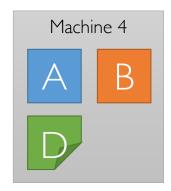


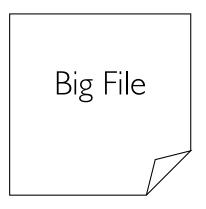


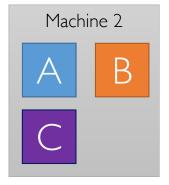


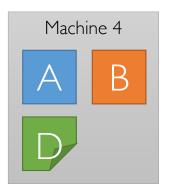


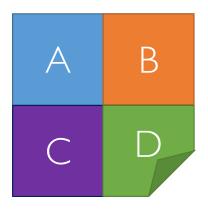


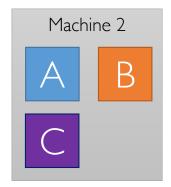


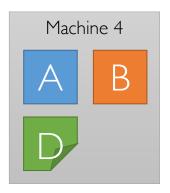


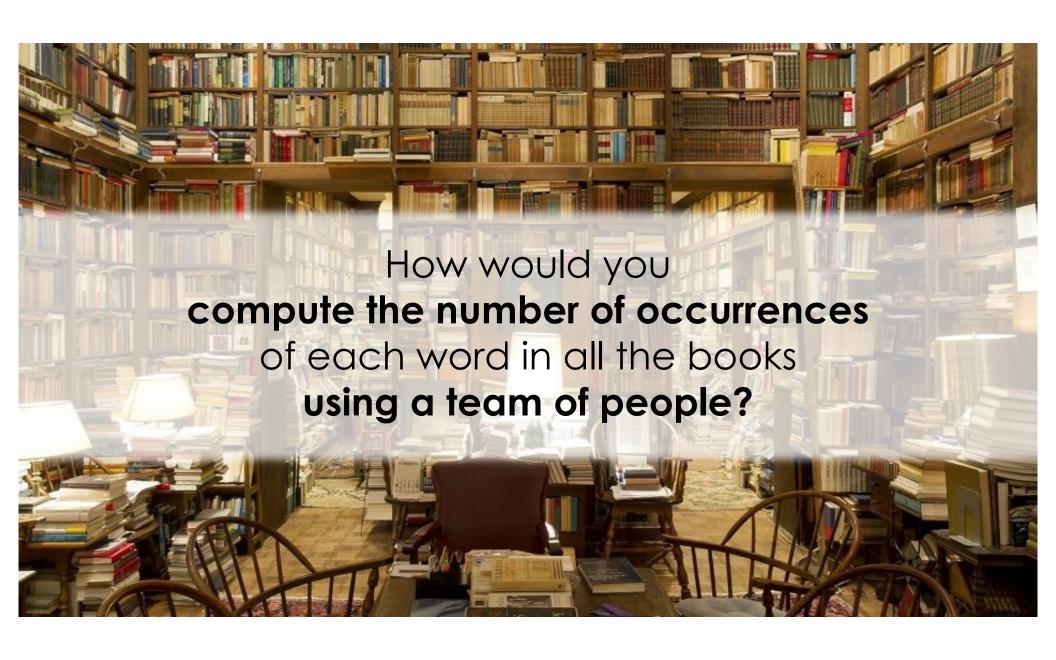












Map-Reduce Distributed Aggregation

Computing are very large files

2) Compute Counts Locally

Word	Count
Apple	2
Bird	7

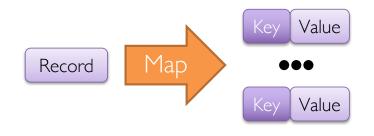
Word	Count
Apple	0
Bird	1

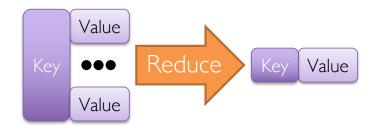
1) Divide Books Across Individuals

2) Compute Counts Locally

Word	Count
Apple	2
Bird	7
•••	

3) Aggregate Tables


Word	Count
Apple	2
Bird	8
•••	



Word	Count
Apple	0
Bird	1

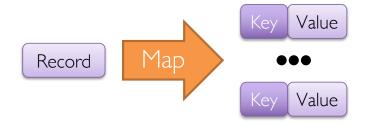
The Map Reduce Abstraction

Example: Word-Count

```
Map(docRecord) {
  for (word in docRecord) {
    emit (word, 1)
    }
    Key Value
}
```

```
Reduce(word, counts) {
  emit (word, SUM(counts))
}
```

Map: Deterministic

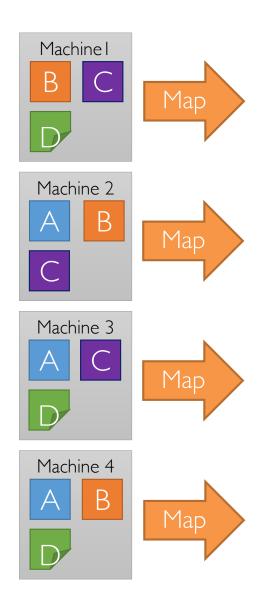

Reduce: Commutative and Associative

[Dean & Ghemawat, OSDI'04]

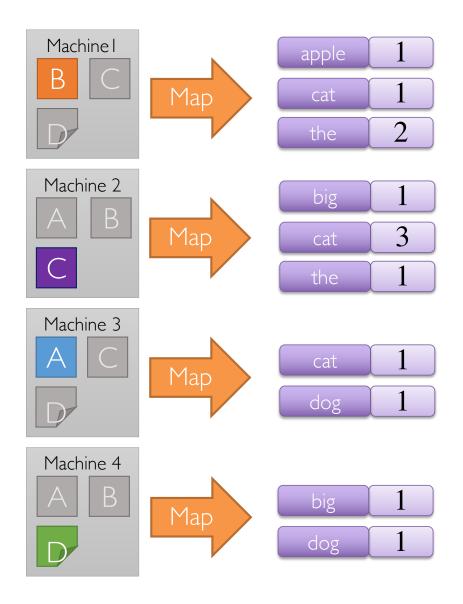
Key properties of Map And Reduce

- > Deterministic Map: allows for re-execution on failure
 - > If some computation is lost we can always re-compute
 - Issues with samples?
- > Commutative Reduce: allows for re-order of operations
 - Reduce(A,B) = Reduce(B,A)
 - \triangleright Example (addition): A + B = B + A
 - Is floating point math commutative?
- > Associative Reduce: allows for regrouping of operations
 - Reduce(Reduce(A,B), C) = Reduce(A, Reduce(B,C))
 - \triangleright Example (max): max(max(A,B), C) = max(A, max(B,C))

Executing Map Reduce



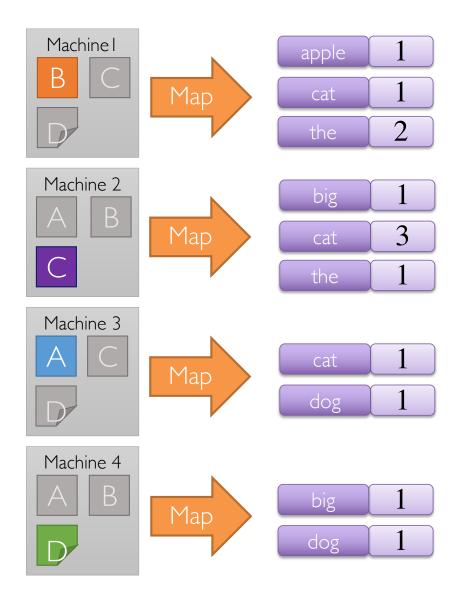
Executing Map Reduce



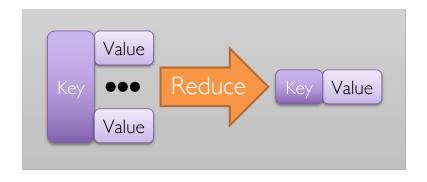
Distributing the Map Function

Executing Map Reduce

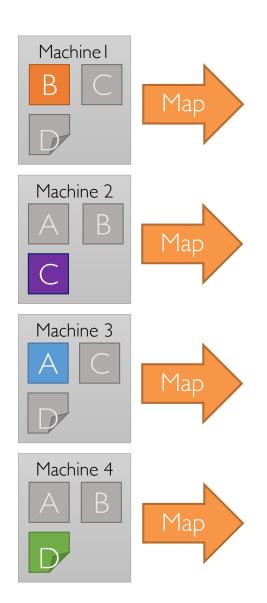
Distributing the Map Function

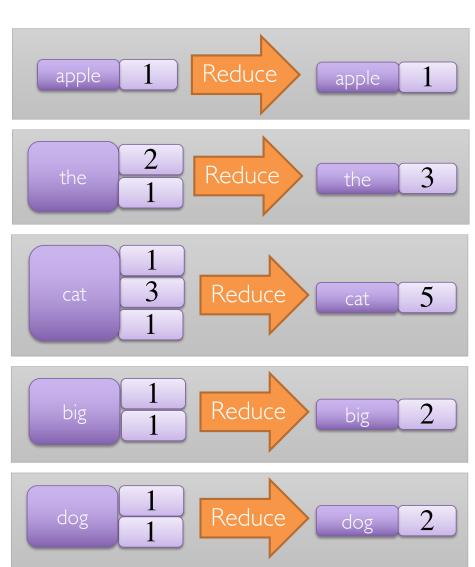


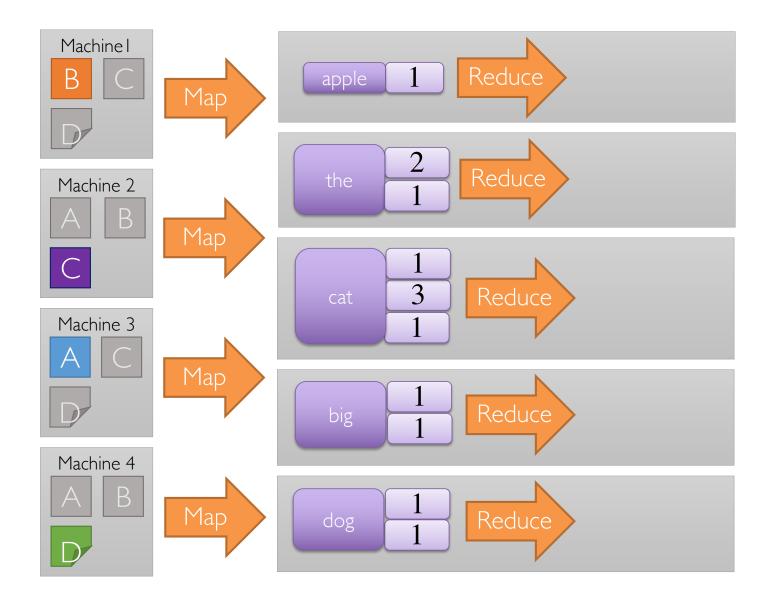
Executing Map Reduce


The map function applied to a local part of the big file.

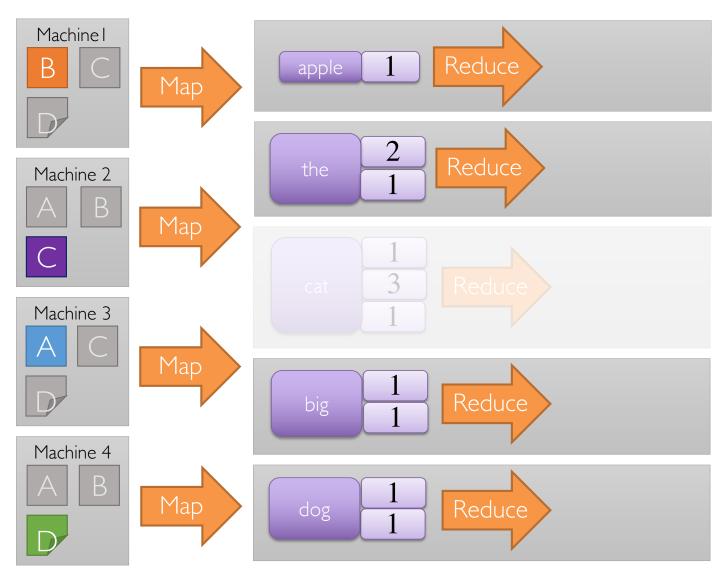
Run in Parallel.


Output is cached for fast recovery on node failure


Executing Map Reduce

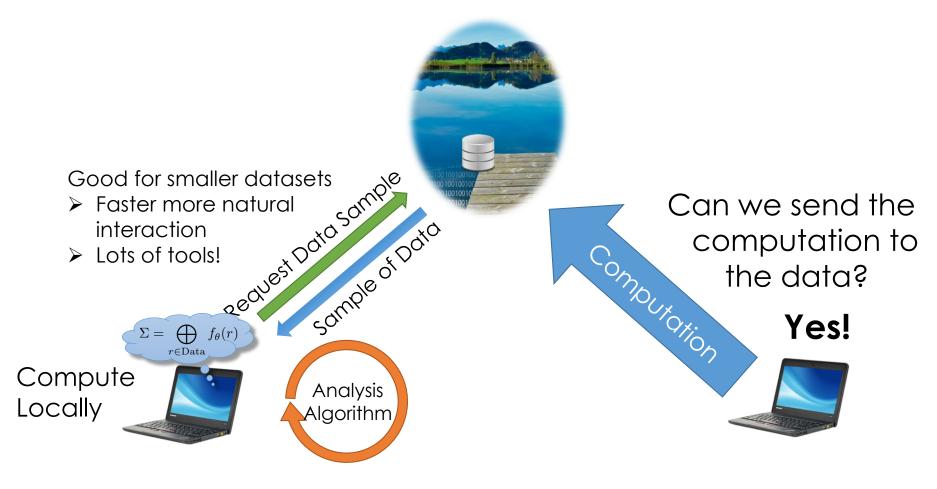


Reduce function can be run on many machines ...



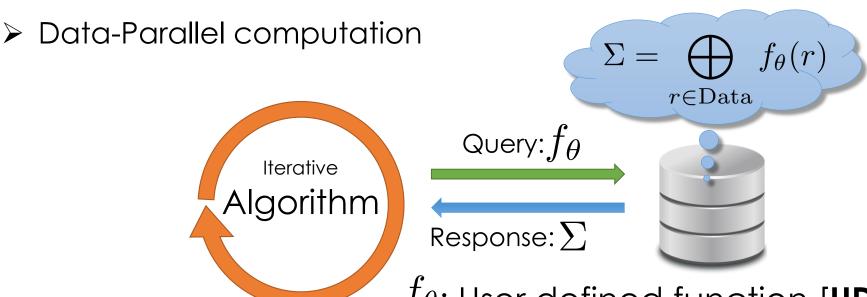
Run in Parallel

Output File apple 1 the 3 cat 5 big 2 dog 2

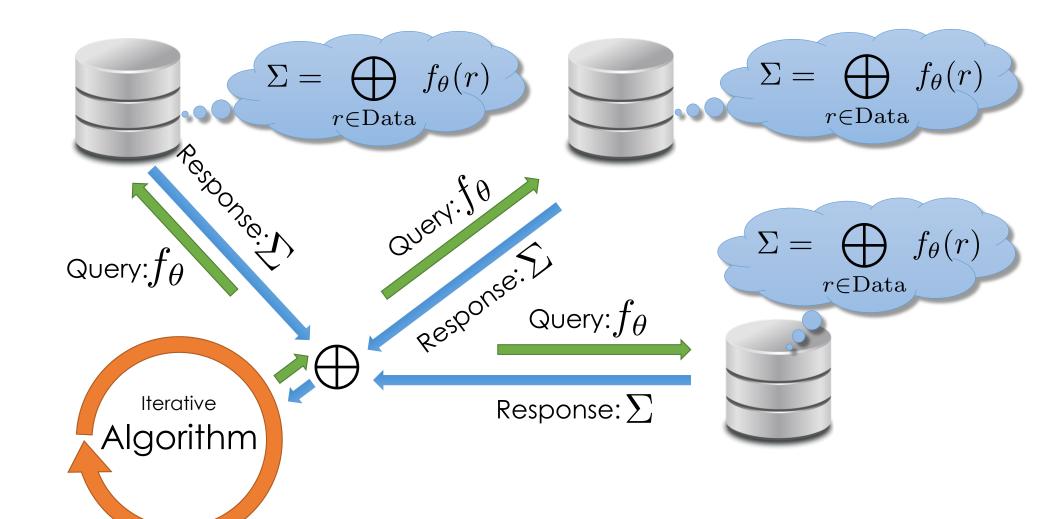


If part of the file or any intermediate computation is lost we can simply **recompute it** without recomputing everything.

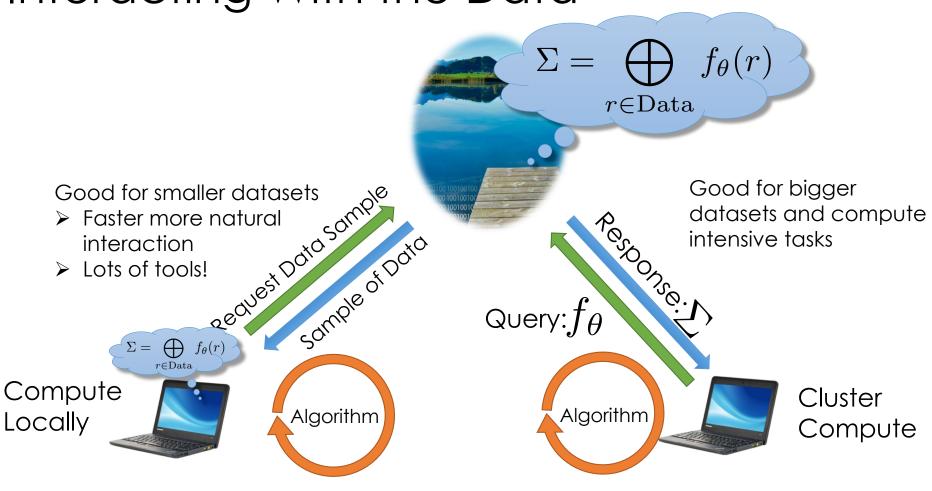
Interacting with Data @ Scale


Map-Reduce

Interacting With the Data

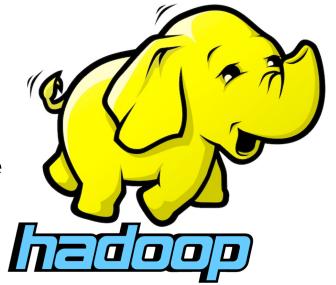

Statistical Query Pattern Common Machine Learning Pattern

Computing aggregates of user defined functions

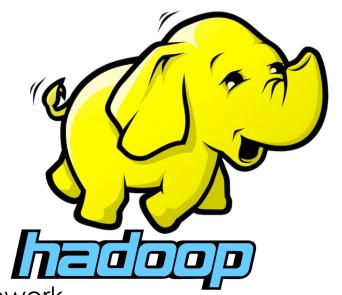


 f_{θ} : User defined function [**UDF**]

 \bigoplus : User defined aggregate [**UDA**]


Interacting With the Data

Map Reduce Technologies


Hadoop

- > First open-source map-reduce software
 - Managed by Apache foundation
- > Based on Google's
 - Google File System
 - MapReduce
- > Companies formed around Hadoop:
 - > Cloudera
 - > Hortonworks
 - ➤ MapR

Hadoop

- > Very active open source ecosystem
- > Several key technologies
 - > HDFS: Hadoop File System
 - > MapReduce: map-reduce compute framework
 - > YARN: Yet another resource negotiator
 - ➤ **Hive:** SQL queries over MapReduce
 - **>** ...

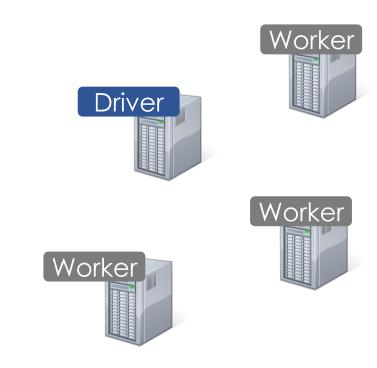
In-Memory Dataflow System Developed at the UC Berkeley AMP Lab

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: cluster computing with working sets. HotCloud' 10

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M.J. Franklin, S. Shenker, I. Stoica. Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing, NSDI 2012

- Parallel execution engine for big data processing
- > General: efficient support for multiple workloads
- **Easy** to use: 2-5x less code than Hadoop MR
 - High level API's in Python, Java, and Scala
- Fast: up to 100x faster than Hadoop MR
 - Can exploit in-memory when available
 - Low overhead scheduling, optimized engine

Spark Programming Abstraction


- Write programs in terms of transformations on distributed datasets
- Resilient Distributed Datasets (RDDs)
 - Distributed collections of objects that can stored in memory or on disk
 - Built via parallel transformations (map, filter, ...)
 - Automatically rebuilt on failure

RDD: Resilient Distributed Datasets

- Collections of objects partitioned & distributed across a cluster
 - > Stored in RAM or on Disk
 - Resilient to failures
- Operations
 - > Transformations
 - > Actions

Operations on RDDs

- > Transformations f(RDD) => RDD
 - Lazy (not computed immediately)
 - E.g., "map", "filter", "groupBy"
- > Actions:
 - Triggers computation
 - E.g. "count", "collect", "saveAsTextFile"

Load error messages from a log into memory, then interactively search for various patterns

lines = spark.textFile("hdfs://file.txt")

Load error messages from a log into memory, then interactively search for various patterns

Base RDD

lines = spark.textFile("hdfs://file.txt")

Load error messages from a log into memory, then interactively search for various patterns

```
lines = spark.textFile("hdfs://file.txt")
errors = lines.filter(lambda s: s.startswith("ERROR"))
```


Driver


```
lines = spark.textFile("hdfs://file.txt")
errors = lines.filter(lambda s: s.startswith("ERROR"))
```



```
lines = spark.textFile("hdfs://file.txt")
errors = lines.filter(lambda s: s.startswith("ERROR"))
                                                     Driver
messages = errors.map(lambda s: s.split("\t")[2])
messages.cache()
messages.filter(lambda s: "mysql" in s).count()
```



```
Worker
lines = spark.textFile("hdfs://file.txt")
errors = lines.filter(lambda s: s.startswith("ERROR"))
                                                     Driver
messages = errors.map(lambda s: s.split("\t")[2])
messages.cache()
                                                    Action
messages.filter(lambda s: "mysql" in s).count()
```


Load error messages from a log into memory, then interactively search for various patterns

```
lines = spark.textFile("hdfs://file.txt")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t")[2])
messages.cache()
```


messages.filter(lambda s: "mysql" in s).count()


```
lines = spark.textFile("hdfs://file.txt")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t")[2])
messages.cache()
messages.filter(lambda s: "mysql" in s).count()

Partition 2
Partition 2
```

Load error messages from a log into memory, then interactively search for various patterns

```
lines = spark.textFile("hdfs://file.txt")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t")[2])
messages.cache()
messages.filter(lambda s: "mysql" in s).count()

Worker
Read
Partition 2
```

Read

HDFS

Partitio

HDFS

Partition

```
Cache
lines = spark.textFile("hdfs://file.txt")
errors = lines.filter(lambda s: s.startswith("ERROR"))
                                                       Driver
messages = errors.map(lambda s: s.split("\t")[2])
                                                                           Process
messages.cache()
                                                                          & Cache
                                                                      Cache 2
messages.filter(lambda s: "mysql" in s).count()
                                                     Cache 3
                                                                      Partition 2
                                                   Worker
                                                              Process
                                                                          Process
                                                              & Cache
                                                                          & Cache
                                                  Partition 3
                                                              Data
```

```
Cache 1
                                                                        Worker
lines = spark.textFile("hdfs://file.txt")
errors = lines.filter(lambda s: s.startswith("ERROR"))
                                                              results
                                                                         Partition
                                                       Driver
messages = errors.map(lambda s: s.split("\t")[2])
messages.cache()
                                                                    results
                                                                       Cache 2
messages.filter(lambda s: "mysql" in s).count()
                                                        results
                                                                       Worker
                                                      Cache 3
                                                    Worker
                                                                        Partition 2
                                                   Partition 3
```

```
lines = spark.textFile("hdfs://file.txt")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t")[2])
messages.cache()

messages.filter(lambda s: "mysql" in s).count()
messages.filter(lambda s: "php" in s).count()
```



```
Cache 1
                                                                       Worker
lines = spark.textFile("hdfs://file.txt")
errors = lines.filter(lambda s: s.startswith("ERROR"))
                                                                tasks
                                                                        Partition
                                                       Driver
messages = errors.map(lambda s: s.split("\t")[2])
messages.cache()
                                                                  tasks
                                                                       Cache 2
messages.filter(lambda s: "mysql" in s).count()
                                                                      Worker
                                                        /tasks
messages.filter(lambda s: "php" in s).count()
                                                      Cache 3
                                                                        Partition 2
                                                    Worker
                                                   Partition 3
```

```
Cache
                                                                       Worker
lines = spark.textFile("hdfs://file.txt")
errors = lines.filter(lambda s: s.startswith("ERROR"))
                                                                        Partition
                                                       Driver
messages = errors.map(lambda s: s.split("\t")[2])
                                                                           Process
messages.cache()
                                                                           from
                                                                           Cache
                                                                      Cache 2
messages.filter(lambda s: "mysql" in s).count()
messages.filter(lambda s: "php" in s).count()
                                                     Cache 3
                                                                       Partition 2
                                                              Process
                                                                          Process
                                                              from
                                                                          from
                                                  Partition 3
                                                              Cache
                                                                          Cache
```

```
Cache 1
                                                                       Worker
lines = spark.textFile("hdfs://file.txt")
errors = lines.filter(lambda s: s.startswith("ERROR"))
                                                             results
                                                                        Partition
                                                       Driver
messages = errors.map(lambda s: s.split("\t")[2])
messages.cache()
                                                                    results
                                                                       Cache 2
messages.filter(lambda s: "mysql" in s).count()
                                                       results
                                                                      Worker
messages.filter(lambda s: "php" in s).count()
                                                      Cache 3
                                                    Worker
                                                                        Partition 2
                                                   Partition 3
```

Load error messages from a log into memory, then interactively search for various patterns

```
lines = spark.textFile("hdfs://file.txt")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t")[2])
messages.cache()

messages filter(lambda s: "myssal" in s) sount()
```


messages.filter(lambda s: "mysql" in s).count()
messages.filter(lambda s: "php" in s).count()

Cache your data → Faster Results

Full-text search of Wikipedia

- 60GB on 20 EC2 machines
- 0.5 sec from mem vs. 20s for on-disk

Abstraction: Dataflow Operators

map	reduce	sample
filter	count	take
groupBy	fold	first
sort	reduceByKey	partitionBy
union	groupByKey	mapWith
join	cogroup	pipe
leftOuterJoin	cross	save
rightOuterJoin	zip	

Abstraction: Dataflow Operators

map

filter

groupBy

sort

union

join

leftOuterJoin

rightOuterJoin

reduce

count

fold

reduceByKey

groupByKey

cogroup

cross

zip

sample

take

first

partitionBy

mapWith

pipe

save

. . .

Language Support

Python

```
lines = sc.textFile(...)
lines.filter(lambda s: "ERROR" in s).count()
```

Scala

```
val lines = sc.textFile(...)
lines.filter(x => x.contains("ERROR")).count()
```

Java

```
JavaRDD<String> lines = sc.textFile(...);
lines.filter(new Function<String, Boolean>() {
   Boolean call(String s) {
    return s.contains("error");
   }
}).count();
```

Standalone Programs

Python, Scala, & Java

Interactive Shells

Python & Scala

Performance

Java & Scala are faster due to static typing