Data Science 100

Lecture 13: Modeling and Estimation Slides by: Joseph E. Gonzalez, <u>isconzal@betkeley.edu</u> 2018 updates - Fernando Perez@betkele.edu

Today – Models & Estimation

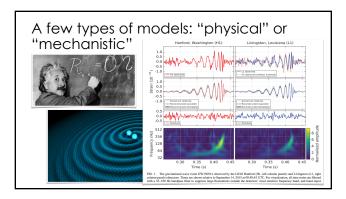
What is a model?

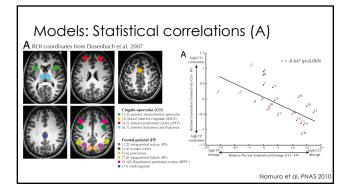
What is a model?

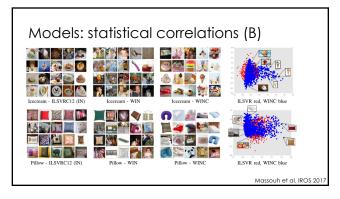
A model is an an **idealized** representation of a system

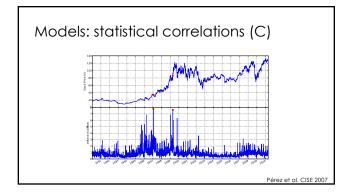
Proteins are far more complex We haven't really seen one of these

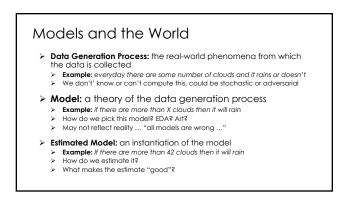












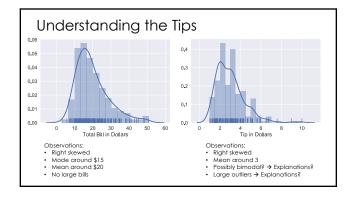
Step 1: Understanding the Data (EDA)

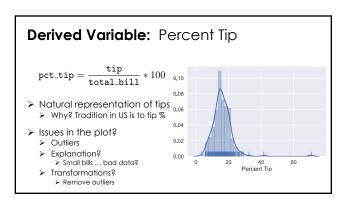
pri		nber		set("ti ords:",))
Num	ber of	Reco	rds: 2	44			
	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

Collected by a single waiter
over a month
Why?

Predict which tables will tip the highest

 Understand relationship between tables and tips





Step 1: Define the Model

Start with a *Simple Model*: Constant

 $percentage \ tip = \theta^* \overset{*}{\underset{\text{determined by universe}}} * Means true parameter \\$

- Rationale: There is a percent tip θ* that all customers pay > Correct?
 - No! We have different percentage tips in our data
 Why? Maybe people make mistakes calculating their bills?
 Useful?
 - > Perhaps. A good estimate θ^* could allow us to predict future tips ...
- > The **parameter** θ^* is determined by the universe
- > we generally don't get to see $\theta^* \dots$
- \succ we will need to develop a procedure to estimate θ^* from the data

How do we estimate the parameter θ^*

- > Guess a number using prior knowledge: 15%
- > Use the data! How?
- > Estimate the value θ^* as:
 - The percent tip from a randomly selected receipt
 - > the **mode** of the distribution observed
 - > the **mean** of the percent tips observed
 - > the **median** of the percent tips observed
- Which is the best? How do I define best?
 Depends on our goals ...

Defining an the Objective (Goal)

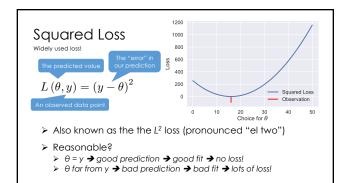
- > Ideal Goal: estimate a value for ∂* such that the model makes good predictions about the future.
 > Great goal! Problem?
 - > We don't know the future. How will we know if our estimate is good?
 > There is hope! ... we will return to this goal ... in the future ©
- Simpler Goal: estimate a value for θ* such that the model "fits" the data
- What does it mean to "fit" the data?
 We can define a lass function that magain
 - $\succ\,$ We can define a loss function that measures the error in our model on the data

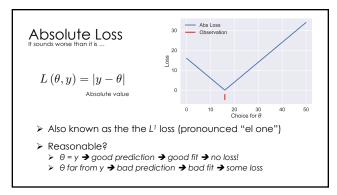
Step 2: Define the Loss

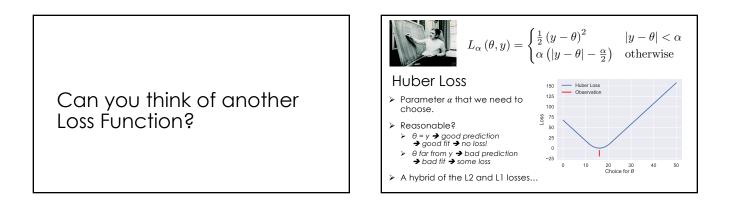
"Take the Loss"

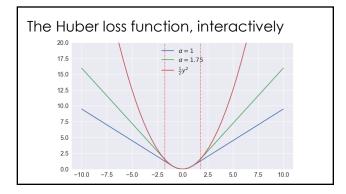
Loss Functions

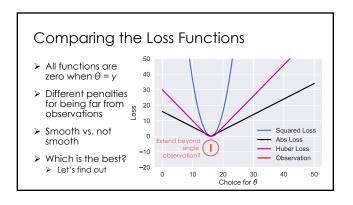
- Loss function: a function that characterizes the cost, error, or loss resulting from a particular choice of model or model parameters.
- Many definitions of loss functions and the choice of loss function affects the accuracy and computational cost of estimation.
- The choice of loss function depends on the estimation task
 quantitative (e.g., tip) or qualitative variable (e.g., political affiliation)
 Do we care about the outliers?
 - Are all errors equally costly? (e.g., false negative on cancer test)











Average Loss

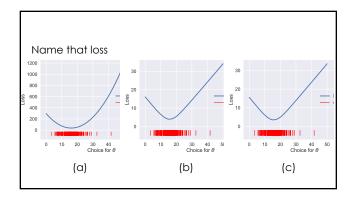
A natural way to define the loss on our entire dataset is to compute the average of the loss on each record.

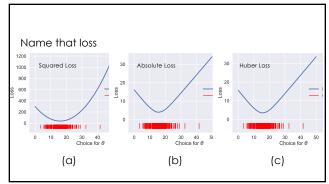
$$L\left(heta, \mathcal{D}
ight) = rac{1}{n} \sum_{i=1}^{n} L(heta, y_i)$$
 et of n data points

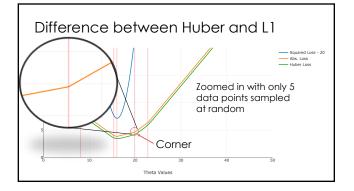
In some cases we might take a weighted average (when?)
 Some records might be more important or reliable

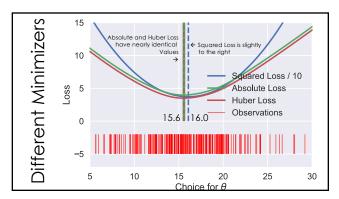
> What does the average loss look like?

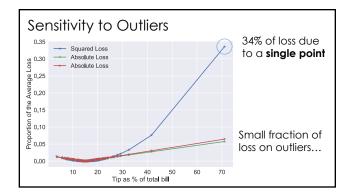
Double Jeopardy Name that Loss!











Recap on Loss Functions

- > Loss functions: a mechanism to measure how well a particular instance of a model fits a given dataset
- > Squared Loss: sensitive to outliers but a smooth function
- > Absolute Loss: less sensitive to outliers but not smooth
- > Huber Loss: less sensitive to outliers and smooth but has an extra parameter to deal with
- > Why is smoothness an issue \rightarrow Optimization! ...

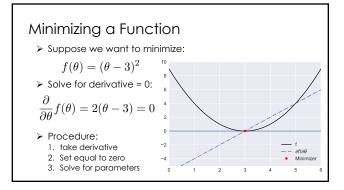
Summary of Model Estimation (so far...)

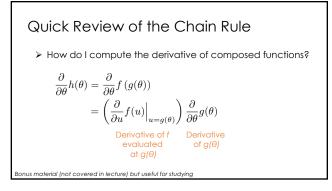
- 1. Define the Model: simplified representation of the world Use domain knowledge but ... keep it simple!
 Introduce parameters for the unknown quantities
- 2. Define the Loss Function: measures how well a particular instance

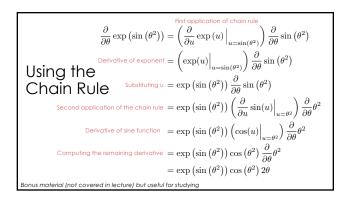
 - of the model "fits" the data > We introduced L², L¹, and Huber losses for each record Take the average loss over the entire dataset
- 3. Minimize the Loss Function: find the parameter values that minimize the loss on the data
 - > So far we have done this graphically
 - 5 Now we will minimize the loss analytically

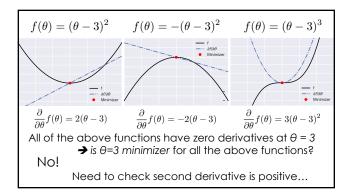
Step 3: Minimize the Loss

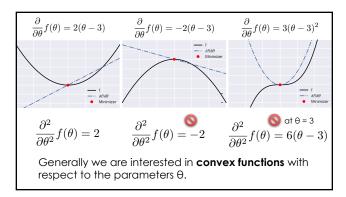
A Brief Review of Calculus

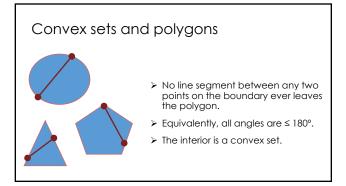


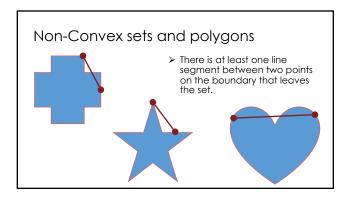


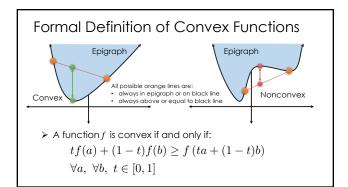


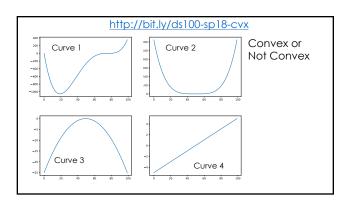


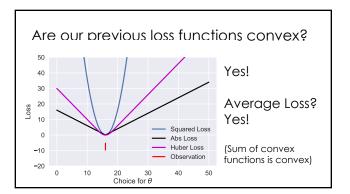


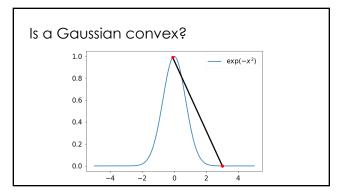


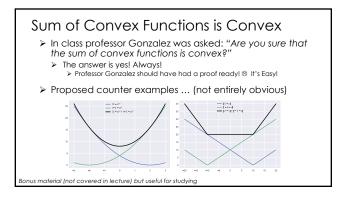








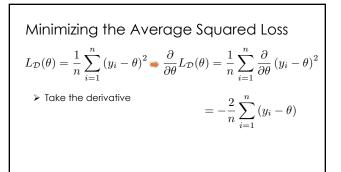


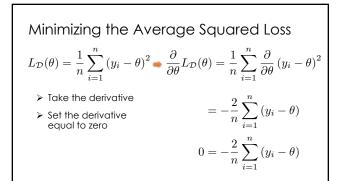


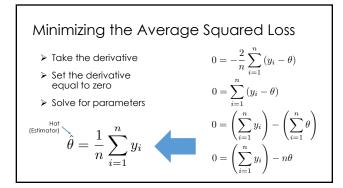
Formal Proof

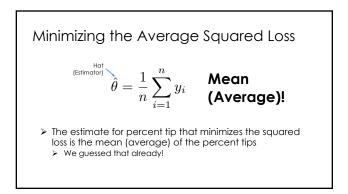
> Suppose you have two convex functions f and g: $tf(a) + (1-t)f(b) \ge f(ta - (1-t)a)$ $tg(a) + (1-t)g(b) \ge g(ta - (1-t)a)$ $\forall a, \ \forall b, \ t \in [0, 1]$ > We would like to show: $th(a) + (1-t)h(b) \ge h(ta - (1-t)a)$ > Where: h(x) = f(x) + g(x)summative for studying

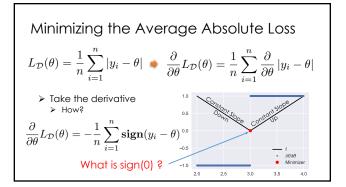
We would like to show:						
$th(a) + (1-t)h(b) \ge h(ta - (1-t)a)$						
\succ Where: $h(x) = f(x) + g(x)$						
Starting on the left side						
Substituting definition of h: th(a) + (1-t)h(b) = t(f(a) + g(a)) + (1-t)(f(b) + g(b))						
Re-arranging terms: $= [tf(a) + (1-t)f(b)] + [tg(a) + (1-t)g(b)]$						
Convexity in $f \ge f(ta + (1-t)b) + [tg(a) + (1-t)g(b)]$						
Convexity in $g \ge f(ta + (1-t)b) + g(ta + (1-t)b)$						
Definition of $h = h (ta + (1 - t)b)$						
Bonus material (not covered in lecture) but useful for studying						

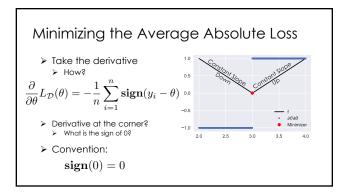


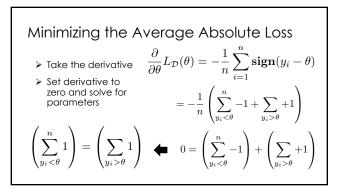


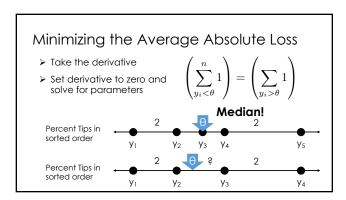




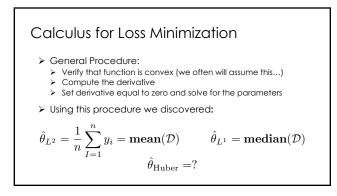


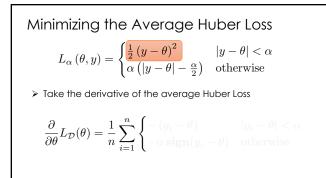


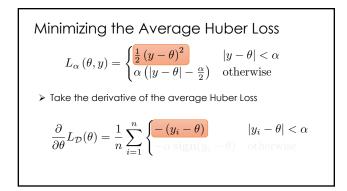


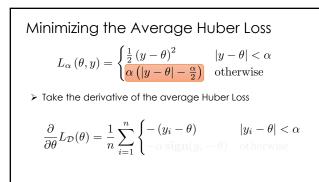


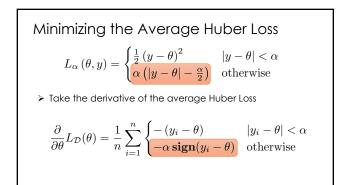




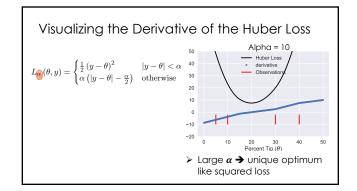


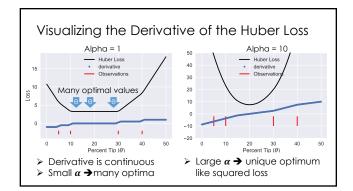




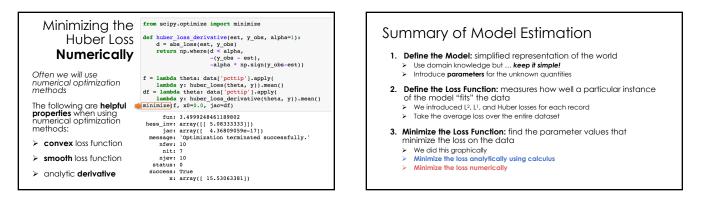


$$\begin{split} &\frac{\partial}{\partial \theta} L_{\mathcal{D}}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \begin{cases} -(y_{i} - \theta) & |y_{i} - \theta| < \alpha \\ -\alpha \operatorname{sign}(y_{i} - \theta) & \text{otherwise} \end{cases} \\ &\succ \text{ Set derivative equal to zero:} \\ &\left(\sum_{\theta \geq y_{i} + \alpha} \alpha\right) - \left(\sum_{\theta \leq y_{i} - \alpha} \alpha\right) - \left(\sum_{|y_{i} - \theta| < \alpha} (y_{i} - \theta)\right) = 0 \\ &\succ \text{ Solution?} \\ &\succ \text{ No simple analytic solution ...} \\ &\succ \text{ We can still plot the derivative} \end{split}$$





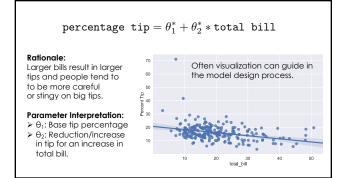
Numerical Optimization

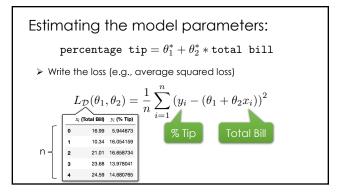


Going beyond the simple model

percentage tip = θ^*

- > How could we improve upon this model?
- Things to consider when improving the model
 Related factors to the quantity of interest
 Examples: quality of service, table size, time of day, total bill
 - > Do we have data for these factors?
 > The form of the relationship to the quantity of interest
 - Linear relationships, step functions, etc ...
 Goals for improving the model
- > Improve prediction accuracy → more complex models
 > Provide understanding → simpler models
- > Frome understanding → simpler models
 > Is my model "identifiable" (is it possible to estimate the parameters?)
 > percent tip = θ₁* + θ₂* ← many identical parameterizations





$$L_{\mathcal{D}}(\theta_1, \theta_2) = \frac{1}{n} \sum_{i=1}^n (y_i - (\theta_1 + \theta_2 x_i))^2$$

> Take the derivative(s):

$$\frac{\partial}{\partial \theta_1} L_{\mathcal{D}}(\theta_1, \theta_2) = \frac{1}{n} \sum_{i=1}^n \frac{\partial}{\partial \theta_1} (y_i - (\theta_1 + \theta_2 x_i))^2$$

$$= -\frac{2}{n} \sum_{i=1}^n (y_i - (\theta_1 + \theta_2 x_i))$$

$$\begin{split} L_{\mathcal{D}}(\theta_1, \theta_2) &= \frac{1}{n} \sum_{i=1}^n \left(y_i - (\theta_1 + \theta_2 x_i) \right)^2 \\ &\succ \text{ Take the derivative(s):} \\ &\frac{\partial}{\partial \theta_1} L_{\mathcal{D}}(\theta_1, \theta_2) = -\frac{2}{n} \sum_{i=1}^n \left(y_i - (\theta_1 + \theta_2 x_i) \right) \\ &\frac{\partial}{\partial \theta_2} L_{\mathcal{D}}(\theta_1, \theta_2) = -\frac{2}{n} \sum_{i=1}^n \left(y_i - (\theta_1 + \theta_2 x_i) \right) \frac{\partial}{\partial \theta_2} \theta_2 x_i \\ &= -\frac{2}{n} \sum_{i=1}^n \left(y_i - (\theta_1 + \theta_2 x_i) \right) x_i \end{split}$$

$$L_{\mathcal{D}}(\theta_{1},\theta_{2}) = \frac{1}{n} \sum_{i=1}^{n} (y_{i} - (\theta_{1} + \theta_{2}x_{i}))^{2}$$
> Take the derivative(s):

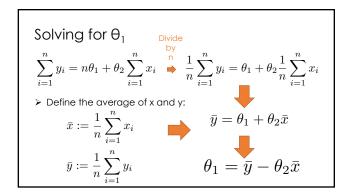
$$\frac{\partial}{\partial \theta_{1}} L_{\mathcal{D}}(\theta_{1},\theta_{2}) = -\frac{2}{n} \sum_{i=1}^{n} (y_{i} - (\theta_{1} + \theta_{2}x_{i}))$$

$$\frac{\partial}{\partial \theta_{2}} L_{\mathcal{D}}(\theta_{1},\theta_{2}) = -\frac{2}{n} \sum_{i=1}^{n} (y_{i} - (\theta_{1} + \theta_{2}x_{i})) x_{i}$$
> Set derivatives equal to zero and solve for parameters

Solving for
$$\theta_1$$

$$0 = -\frac{2}{n} \sum_{i=1}^{n} (y_i - (\theta_1 + \theta_2 x_i))$$

$$= -\frac{2}{n} \left(\left(\left(\sum_{i=1}^{n} y_i \right) - n\theta_1 - \theta_2 \sum_{i=1}^{n} x_i \right) \right)$$
Rearranging $\sum_{i=1}^{n} y_i = n\theta_1 + \theta_2 \sum_{i=1}^{n} x_i$

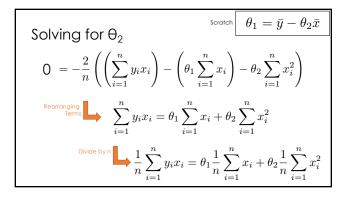


Solving for
$$\theta_2$$

$$\frac{\partial}{\partial \theta_2} L_{\mathcal{D}}(\theta_1, \theta_2) = -\frac{2}{n} \sum_{i=1}^n (y_i - (\theta_1 + \theta_2 x_i)) x_i^{\text{Distributing the x, term}}$$

$$= -\frac{2}{n} \sum_{i=1}^n (y_i x_i - \theta_1 x_i - \theta_2 x_i^2)$$

$$= -\frac{2}{n} \left(\left(\sum_{i=1}^n y_i x_i \right) - \left(\theta_1 \sum_{i=1}^n x_i \right) - \theta_2 \sum_{i=1}^n x_i^2 \right)$$



Solving for
$$\Theta_2$$

$$\frac{1}{n} \sum_{i=1}^n y_i x_i = \theta_1 \frac{1}{n} \sum_{i=1}^n x_i + \theta_2 \frac{1}{n} \sum_{i=1}^n x_i^2$$

$$\overline{x} := \frac{1}{n} \sum_{i=1}^n x_i$$

$$\overline{xy} := \frac{1}{n} \sum_{i=1}^n x_i y_i$$

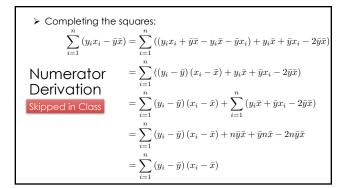
$$\overline{x^2} := \frac{1}{n} \sum_{i=1}^n x_i^2$$

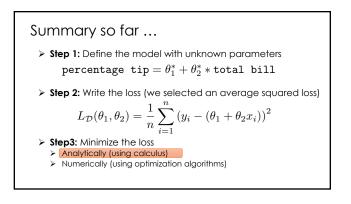
System of
Linear Equations
Substituting
$$\theta_1$$
 and solving for θ_2
 $\overline{xy} = (\overline{y} - \theta_2 \overline{x}) \, \overline{x} + \theta_2 \overline{x^2}$
 $\theta_1 = \overline{y} - \theta_2 \overline{x}$
 $\overline{xy} = \theta_1 \overline{x} + \theta_2 \overline{x^2}$
 $\overline{xy} = \theta_1 \overline{x} + \theta_2 \overline{x^2}$
 $\theta_2 = \frac{\overline{xy} - \overline{y}\overline{x}}{\overline{x^2} - \overline{x}^2} = \frac{\frac{1}{n} \sum_{i=1}^n (x_i - \overline{x}) (y_i - \overline{y})}{\frac{1}{n} \sum_{I=1}^n (x_i - \overline{x})^2}$

$$\sum_{i=1}^{n} (x_i^2 - \bar{x}x_i) = \sum_{i=1}^{n} (x_i^2 - \bar{x}x_i + \bar{x}^2 - \bar{x}x_i - \bar{x}^2 + \bar{x}x_i)$$
> Completing the squares:
$$= \sum_{i=1}^{n} (x_i^2 - 2\bar{x}x_i + \bar{x}^2 - \bar{x}^2 + \bar{x}x_i)$$
Denominator
$$= \sum_{i=1}^{n} ((x_i - \bar{x})^2 - \bar{x}^2 + \bar{x}x_i)$$
Skipped in Class
$$= \sum_{i=1}^{n} (x_i - \bar{x})^2 - n\bar{x}^2 + \bar{x}\sum_{i=1}^{n} x_i$$

$$= \sum_{i=1}^{n} (x_i - \bar{x})^2 - n\bar{x}^2 + \bar{x}n\bar{x}$$

$$= \sum_{i=1}^{n} (x_i - \bar{x})^2$$



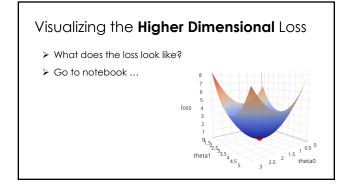


$$\begin{split} L_{\mathcal{D}}(\theta_1, \theta_2) &= \frac{1}{n} \sum_{i=1}^n \left(y_i - (\theta_1 + \theta_2 x_i) \right)^2 \\ & > \text{ Step3: Minimize the loss} \\ & > \text{ Analytically (using calculus)} \\ & > \text{ Numerically (using optimization algorithms)} \\ & \frac{\partial}{\partial \theta_1} L_{\mathcal{D}}(\theta_1, \theta_2) = -\frac{2}{n} \sum_{i=1}^n \left(y_i - (\theta_1 + \theta_2 x_i) \right) \\ & \frac{\partial}{\partial \theta_2} L_{\mathcal{D}}(\theta_1, \theta_2) = -\frac{2}{n} \sum_{i=1}^n \left(y_i - (\theta_1 + \theta_2 x_i) \right) x_i \end{split}$$

Set derivatives equal to zero and solve for parameter values
$$\theta_1 = \bar{y} - \theta_2 \bar{x}$$

$$\theta_2 = \frac{\bar{x}\bar{y} - \bar{y}\bar{x}}{\bar{x}^2 - \bar{x}^2} = \frac{\frac{1}{n}\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\frac{1}{n}\sum_{I=1}^n (x_i - \bar{x})^2}$$
Is this a local minimum?
$$\frac{\partial^2}{\partial \theta_1^2} L_{\mathcal{D}}(\theta_1, \theta_2) = -\frac{2}{n}\sum_{i=1}^n \frac{\partial}{\partial \theta_1}(y_i - (\theta_1 + \theta_2 x_i)) = -\frac{2}{n}\sum_{i=1}^n -1 = 2$$

$$\frac{\partial^2}{\partial \theta_2^2} L_{\mathcal{D}}(\theta_1, \theta_2) = -\frac{2}{n}\sum_{i=1}^n \frac{\partial}{\partial \theta_2}(y_i - (\theta_1 + \theta_2 x_i)) = \frac{2}{n}\sum_{i=1}^n x_i^2 > 0$$



"Improving" the Model (more...)

$\begin{array}{l} \texttt{percentage tip} = \theta_1^* + \theta_2^* * \texttt{is Male} \\ + \, \theta_3^* * \texttt{is Smoker} + \, \theta_4^* * \texttt{table size} \end{array}$

Difficult

to

Plot

Go to Notebook

Rational:

Each term encodes a potential factor that could affect the percentage tip.

Possible Parameter Interpretation:

- θ₁: base tip percentage paid by female nonsmokers without accounting for table size.
- > θ_2 : tip change associated with male patrons ...

Maybe difficult to estimate ... what if all smokers are male?

