
Lecture 11:
Finish Web Technologies &
Begin SQL Databases

Slides by:

Joseph E. Gonzalez

jegonzal@berkeley.edu

?

mailto:jegonzal@berkeley.edu

Last Two Lectures

Ø Last Thursday: String manipulation & Regular Expressions
Ø guest lecture from the amazing Sam Lau
Ø reviewed in section and in future labs & HWs

Ø Last Tuesday: HTTP, XML, and JSON
Ø Pandas web tables support
Ø Using the browser developer mode
Ø JSON and basics of XML
Ø Started HTTP request/response protocol and GET vs POST
Ø Didn’t finish REST and web-services …

REST APIs
GET /website/images Get all images
POST /website/images Add an image
GET /website/images/{id} Get a an image
PUT /website/images/{id} Update an image
DELETE /website/images/{id} Delete an image

Client Server

Example:

REST – Representational State Transfer

Ø A way of architecting widely accessible, efficient, and extensible
web services (typically using HTTP)

Ø Client-Server: client and server are able to evolve independently

Ø Stateless: The server does not store any of the clients session state

Ø Cacheable: system should clearly define what functionality can be
cached (e.g., GET vs POST requests)

Ø Uniform Interface: provide a consistent interface for getting and
updating data in a system

Demo
TwitterAPI_REST_Example.ipynb

Scraping Ethics
Ø Don’t violate terms of use for the service or data

Ø Scraping can cause result in degraded services for others
Ø Many services are optimized for human user access patterns
Ø Requests can be parallelized/distributed to saturate server
Ø Each query may result in many database requests

Ø How to scrape ethically:
Ø Used documented REST APIs – read terms of service
Ø Examine at robots.txt (e.g., https://en.wikipedia.org/robots.txt)
Ø Throttle request rates (sleep)

Ø Avoid getting Berkeley (or your organization) blocked
from websites & services

https://en.wikipedia.org/robots.txt

Slides by:

Joseph E. Gonzalez & Joseph Hellerstein,

jegonzal@berkeley.edu

jhellerstein@berkeley.edu

?

Databases and SQL
Part 1

What is a database?

Defining Databases
Ø A database is an organized collection of data.

Ø A database management systems (DBMS) is a software
system that stores, manages, and facilitates access to
one or more databases.

Database Management Systems
Ø Data storage

Ø Provide reliable storage to survive system crashes and disk failures
Ø Special data-structures to improve performance

Ø Data management
Ø Configure how data is logically organized and who has access
Ø Ensure data consistency properties (e.g., positive bank account

values)

Ø Facilitate access
Ø Enable efficient access to the data
Ø Supports user defined computation (queries) over data

Is Pandas a Database Management System?

Ø Data Storage?
Ø Pandas doesn’t store data, this is managed by the filesystem

Ø Data Management?
Ø Pandas does support changing the organization of data but doesn’t

manage who can access the data

Ø Facilitate Access?
Ø Pandas does support rich tools for computation over data

Ø Pandas is not generally considered a database
management system but it often interacts with DBMSs

Why should I use a DBMS?

Ø DBMSs organize many related sources of information

Ø DBMSs enforce guarantees on the data
Ø Can be used to prevent data anomalies
Ø Ensure safe concurrent operations on data

Ø DBMSs can be scalable
Ø Optimized to compute on data that does not fit in memory
Ø Parallel computation and optimized data structures

Ø DBMSs prevent data loss from software/hardware failures

Why can’t I just have my CSV files?

Widely Used
DBMS Technologies

Common DBMS Systems

Relational database management systems are widely used!

https://db-engines.com/en/ranking

https://db-engines.com/en/ranking

Relational Database Management Systems
Ø Relational databases are the traditional DBMS technology

Ø Logically organize data in relations (tables)

Name Prod Price

Sue iPod $200.00

Joey Bike $333.99

Alice Car $999.00

Sales relation:

Tuple (row)
Attribute (column)

Describes relationship:
Name purchased
Prod at Price.

How is data
physically
stored?

Name Prod Price

Sue iPod $200.00

Joey Bike $333.99

Alice Car $999.00

Relational Data Abstraction

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0
bid bname color

101 Interlake blue
102 Interlake red

104 Marine red
103 Clipper green

Relations (Tables)

A
b

st
ra

ct
io

n

Database Management System
Optimized Data Structures

B+Trees

Page 1 Page 2

Page 3 Page 4

Page 5 Page 6

Optimized
Storage

Page
Header

Name Prod Price

Sue iPod $200.00

Joey Bike $333.99

Alice Car $999.00

Relational Data Abstraction

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0
bid bname color

101 Interlake blue
102 Interlake red

104 Marine red
103 Clipper green

Relations (Tables)

A
b

st
ra

ct
io

n

Database Management System
Optimized Data Structures

B+Trees

Page 1 Page 2

Page 3 Page 4

Page 5 Page 6

Optimized
Storage

Page
Header

Physical Data Independence:
Database management systems hide how data is
stored from end user applications

à System can optimize storage and computation
without changing applications.

Big Idea in Data Structures
Data Systems &
Computer Science

It wasn’t always like this …

In a time long ago …

Before 1970’s databases
were not routinely organized as tables.

Instead they exposed specialized
data structures designed for

specific applications.

Ted Codd and the Relational Model

Ø [1969] Relational model: a mathematical
abstraction of a database as sets
Ø Independence of data from the physical properties of

stage storage and representation

Ø [1972] Relational Algebra & Calculus: a collection
of operations and a way defining logical
outcomes for data transformations
Ø Algebra: beginning of technologies like Pandas
Ø Calculus: the foundation of modern SQL

Edgar F. “Ted” Codd (1923 - 2003)
Turing Award 1981

Relational Database Management Systems
Ø Traditionally DBMS referred to relational databases

Ø Logically organize data in relations (tables)

Ø Structured Query Language (SQL) to define, manipulate
and compute on data.
Ø A common language spoken by many data systems

Ø Some variations and deviations from the standard …
Ø Describes logical organization of data as well as computation

on data.

SQLWhatnot
How

SQL is a Declarative Language
Ø Declarative: “Say what you want, not how to get it.”

Ø Declarative Example: I want a table with columns “x” and “y” constructed
from tables “A” and ”B” where the values in “y” are greater than 100.00.

Ø Imperative Example: For each record in table “A” find the corresponding
record in table “B” then drop the records where “y” is less than or equal to
100 then return the ”x” and “y” values.

Ø Advantages of declarative programming
Ø Enable the system to find the best way to achieve the result.
Ø Often more compact and easier to learn for non-programmers

Ø Challenges of declarative programming
Ø System performance depends heavily on automatic optimization
Ø Limited language (not Turing complete)

Review of Relational Terminology

Ø Database: Set of Relations (i.e., one or more tables)

Ø Relation (Table):
Ø Schema: description of columns, their types, and constraints
Ø Instance: data satisfying the schema

Ø Attribute (Column)

Ø Tuple (Record, Row)

Ø Schema of database is set of schemas of its relations

SELET * FROM
THINGS;

Two sublanguages of SQL

Ø DDL – Data Definition Language
Ø Define and modify schema

Ø DML – Data Manipulation Language
Ø Queries can be written intuitively.

CAPITALIZATION IS optional BUT …
DATABASE PEOPLE PREFER TO YELL

Creating Tables &
Populating Tables

CREATE TABLE … CREATE TABLE Sailors (
sid INTEGER,
sname CHAR(20),
rating INTEGER,
age REAL,
PRIMARY KEY (sid));

CREATE TABLE Boats (
bid INTEGER,
bname CHAR (20),
color CHAR(10),
PRIMARY KEY (bid));

CREATE TABLE Reserves (
sid INTEGER,
bid INTEGER,
day DATE,

PRIMARY KEY (sid, bid, day),
FOREIGN KEY (sid) REFERENCES Sailors,
FOREIGN KEY (bid) REFERENCES Boats);

sid sname rating age
1 Fred 7 22
2 Jim 2 39
3 Nancy 8 27

bid bname color
101 Nina red
102 Pinta blue
103 Santa Maria red

sid bid day
1 102 9/12
2 102 9/13

Columns have
names and types

Specify
Primary Key

column(s)

Specify
Foreign Key
relationships

Semicolon at
end of command

Common SQL Types (there are others...)

Ø CHAR(size): Fixed number of characters

Ø TEXT: Arbitrary number of character strings

Ø INTEGER & BIGINT: Integers of various sizes

Ø REAL & DOUBLE PRECISION: Floating point numbers

Ø DATE & DATETIME: Date and Date+Time formats

See documentation for database system (e.g., Postgres)

https://www.postgresql.org/docs/9.5/static/datatype.html

More Creating Tables

CREATE TABLE students(
name TEXT PRIMARY KEY,
gpa REAL CHECK (gpa >= 0.0 and gpa <= 4.0),
age INTEGER,
dept TEXT,
gender CHAR);

Imposing Integrity
Constraints

Useful to ensure data quality…

Inserting Records into a Table
INSERT INTO students
VALUES

('Sergey Brin', 2.8, 40, 'CS', 'M'),
('Danah Boyd', 3.9, 35, 'CS', 'F'),
('Bill Gates', 1.0, 60, 'CS', 'M'),
('Hillary Mason', 4.0, 35, 'DATASCI', 'F'),
('Mike Olson', 3.7, 50, 'CS', 'M'),
('Mark Zuckerberg', 4.0, 30, 'CS', 'M'),
(‘Sheryl Sandberg', 4.0, 47, 'BUSINESS', 'F'),
('Susan Wojcicki', 4.0, 46, 'BUSINESS', 'F'),
('Marissa Meyer', 4.0, 45, 'BUSINESS', 'F');

-- This is a comment.
-- Does the order matter?

Ø Fields must be entered in
order (record)

Ø Comma between records
Ø Must use the single quote

(’) for strings.

(name, gpa, age, dept, gender) ß Optional

No

Deleting and Modifying Records

Ø Records are deleted by specifying a condition:

Ø Modifying records

Ø Notice that there is no way to modify records by location

DELETE FROM students
WHERE LOWER(name) = 'sergey brin'

String Function

UPDATE students
SET gpa = 1.0 + gpa
WHERE dept = ‘CS’;

Deleting and Modifying Records

Ø What is wrong with the following

UPDATE students
SET gpa = 1.0 + gpa
WHERE dept = ‘CS’;

CREATE TABLE students(
name TEXT PRIMARY KEY,
gpa FLOAT CHECK (gpa >= 0.0 and gpa <= 4.0),
age INTEGER,
dept TEXT,
gender CHAR); Update would violate

Integrity Constraints

Querying Tables

SQL DML:
Basic Single-Table Queries
SELECT [DISTINCT] <column expression list>

FROM <single table>
[WHERE <predicate>]
[GROUP BY <column list>
[HAVING <predicate>]]

[ORDER BY <column list>];

Ø Elements of the basic select statement

Ø [Square brackets] are optional expressions.

Basic Single-Table Queries

SELECT [DISTINCT] <column expression list>
FROM <single table>

[WHERE <predicate>]
[GROUP BY <column list>
[HAVING <predicate>]]

[ORDER BY <column list>] ;

Ø Simplest version is straightforward
Ø Produce all tuples in the table that satisfy the predicate
Ø Output the expressions in the SELECT list
Ø Expression can be a column reference, or an arithmetic expression over

column refs

Find the name and GPA for all CS
Students

SELECT name, gpa
FROM students
WHERE dept = 'CS'

SELECT DISTINCT

SELECT DISTINCT dept
FROM students

[WHERE <predicate>]
[GROUP BY <column list>
[HAVING <predicate>]]

[ORDER BY <column list>] ;

Ø DISTINCT flag specifies removal of duplicates before output

ORDER BY

SELECT name, gpa, age
FROM students

WHERE dept = 'CS'
[GROUP BY <column list>
[HAVING <predicate>]]
ORDER BY gpa, name;

Ø ORDER BY clause specifies output to be sorted
Ø Lexicographic ordering

ORDER BY

SELECT name, gpa, age
FROM students

WHERE dept = 'CS'
[GROUP BY <column list>
[HAVING <predicate>]]
ORDER BY gpa DESC, name ASC;

Ø Ascending order by default
Ø DESC flag for descending, ASC for ascending
Ø Can mix and match, lexicographically

Aggregates

SELECT AVG(gpa)
FROM students

WHERE dept = 'CS'
[GROUP BY <column list>
[HAVING <predicate>]]
[ORDER BY <column list>] ;

Ø Before producing output, compute a summary statistic
Ø Aggregates include: SUM, COUNT, MAX, MIN, …

Ø Produces 1 row of output à Still a table

Ø Note: can use DISTINCT inside the agg function
Ø SELECT COUNT(DISTINCT name) …

GROUP BY

SELECT dept, AVG(gpa)
FROM students

[WHERE <predicate>]
GROUP BY dept
[HAVING <predicate>]

[ORDER BY <column list>] ;

Ø Partition table into groups with same GROUP BY column values
Ø Group By takes a list of columns

Ø Produce an aggregate result per group

What does the following Produce?

Ø An error! (why?)
Ø What name should be used for each group?

SELECT name, AVG(gpa)
FROM students

[WHERE <predicate>]
GROUP BY dept
[HAVING <predicate>]

[ORDER BY <column list>] ;

What if we wanted to only consider
departments that have greater than two
students?

SELECT dept, AVG(gpa)
FROM students

[WHERE <predicate>]
GROUP BY dept
[HAVING <predicate>]

[ORDER BY <column list>] ;

What if we wanted to only consider
departments that have greater than two
students?

Ø Doesn’t work …

Ø WHERE clause is applied before GROUP BY
Ø You cannot have aggregation functions in the where clause

SELECT dept, AVG(gpa)
FROM students

WHERE COUNT(*) > 2
GROUP BY dept
[HAVING <predicate>]

[ORDER BY <column list>] ;

?

HAVING

SELECT dept, AVG(gpa)
FROM students

[WHERE <predicate>]
GROUP BY dept
HAVING COUNT(*) > 2

[ORDER BY <column list>] ;

Ø The HAVING predicate is applied after grouping and aggregation
Ø Hence can contain anything that could go in the SELECT list

Ø HAVING can only be used in aggregate queries

Conceptual SQL
Evaluation

SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification
GROUP BY grouping-list
HAVING group-qualification

Try Queries Here
http://sqlfiddle.com/#!17/67109/12

GROUP BY

One or more tables
to use
(cross product …)

Apply selections
(eliminate rows)

Project away columns
(just keep those used in
SELECT, GBY, HAVING)

WHERE

FROM HAVING

Form groups
& aggregate

SELECT

Eliminate
groups

[DISTINCT] Eliminate
duplicates

http://sqlfiddle.com/

Putting it all together

SELECT dept, AVG(gpa) AS avg_gpa, COUNT(*) AS size
FROM students

WHERE gender = 'F'
GROUP BY dept

HAVING COUNT(*) > 2
ORDER BY avg_gpa DESC

What does this compute?

http://bit.ly/ds100-sp18-sql

GROUP BY

WHERE

FROM HAVING

SELECT

[DISTINCT]

http://bit.ly/ds100-sp18-sql

Putting it all together

SELECT dept, AVG(gpa) AS avg_gpa, COUNT(*) AS size
FROM students

WHERE gender = 'F'
GROUP BY dept

HAVING COUNT(*) > 2
ORDER BY avg_gpa DESC

What does this compute?
Ø The average GPA of female students and number of female students in

each department where there are at least 3 female students in that
department. The results are ordered by the average GPA.

GROUP BY

WHERE

FROM HAVING

SELECT

[DISTINCT]

How do you interact with a
database?
What is the DBMS?

Ø Server

Ø Software

Ø A library

Answer: It can be all of these.

Date Purchase ID Name Price

9/20/2012 1234 Sue $200.00

8/21/2012 3453 Joe $333.99

Interacting with a DBMS
Cust. Prod.

Sales

Query
SELECT * FROM sales
WHERE price > 100.0

Response

DBMS Server

Python Analysis

Interacting with a DBMS

DBMS Server

Cust. Prod.

Sales

Web Servers

Web Applications

Visualization
Python Analysis

Often many
systems will
connect to a
DBMS
concurrently.

HTTP

Break

Why are databases drawn as “cans”

Looks Like?

Platters on a Disk Drive

Looks Like?

Platters on a Disk Drive

1956: IBM MODEL 350 RAMAC
First Commercial Disk Drive

5MB @ 1 ton

Simple Single Table Query
Demo

