Data 100

Lecture 5: Data Cleaning & Exploratory Data Analysis

Slides by: Joseph E. Gonzalez, Deb Nolan, & Joe Hellerstein jegonzal@berkeley.edu deborah_nolan@berkeley.edu hellerstein@berkelev.edu

Pandas and Jupyter Notebooks

- Reviewed Jupyter Notebook Environment
- > Introduced DataFrame concepts
 - Series: A named column of data with an index
 Indexes: The mapping from keys to rows
 - > DataFrame: collection of series with common index
- Filtering on predicts and slicing
 filtering on predicts and slicing
 df.loc: location by index
 df.loc: location by integer address
 groupby & pivot (we will review the > Dataframe access methods

 - groupby & pivot (we will review these again today)

What should we look for?

Key Data Properties to Consider in EDA

- > Structure -- the "shape" of a data file
- > Granularity -- how fine/coarse is each datum
- > Scope -- how (in)complete is the data
- > Temporality -- how is the data situated in time
- > Faithfulness -- how well does the data capture "reality"

Key Data Properties to Consider in EDA

- Structure -- the "shape" of a data file
- > Granularity -- how fine/coarse is each datum
- > Scope -- how (in)complete is the data
- > Temporality -- how is the data situated in time
- > Faithfulness -- how well does the data capture "reality"

Data can be **split across files** and **reference other data**.

Structure: Keys

- > Often data will reference other pieces of data
- Primary key: the column or set of columns in a table that determine the values of the remaining columns
 - > Primary keys are unique
 - Examples: SSN, ProductIDs, ...
- Foreign keys: the column or sets of columns that reference primary keys in other tables.

	Purchases.csv						
OrderNum	ProdID		Quantity				
1	42		3				
1	999		2				
2	42		1				
Foreign Key 🔫			Orders.csv				
OrderNum	CustID		Date				
1	171345		8/21/2017				
2	281139		8/30/2017				
		Products.csv					
	Pro	odiD	Cost				
	42		3.14				
	99	7	2.72				
Primary K	ey 🔪	Customers.csv					
	Cu	<u>stID</u>	Addr				
	17	1345	Harmon				
	28	1139	Main				

Merging/joining data across tables

<u>OrderNum</u>	ProdID	Name		<u>OrderId</u>	Cust Name	Date
1	42	Gum	Х	1	Joe	8/21/2017
2	999	NullFood		2	Arthur	8/14/2017
2	42	Towel				
Left "key"	、 、		Right "key"			
OrderNum	ProdID	Name	OrderId	Cust Name	Date	
1	42	Gum	1	Joe	8/21/2017	
	42	Gum	2	Arinur	8/14/2017	Drop rows
2	777	NollFood	1	Jue	8/21/2017	that don't
2	999	NullFood	2	Arthur	8/14/2017	match on
2	42	Towei	1	joe	8/21/2017	the key
2	42	Towel	2	Arthur	8/14/2017	
\square	/		\square	/		
	OrderNum	ProdID	Name	Orderid	Cust Name	Date
	1	42	Gum	1	Joe	8/21/2017
	2	999	NullFood	2	Arthur	8/14/2017
	2	42	Towel	2	Arthur	8/14/2017

Questions to ask about Structure

- > Are the data in a standard format or encoding? Tabular data: CSV, TSV, Excel, SQL
 Nested data: JSON or XML
- > Are the data organized in "records"? No: Can we define records by parsing the data?
- > Are the data nested? (records contained within records...) > Yes: Can we reasonably un-nest the data?
- > Does the data reference other data? > Yes: can we join/merge the data
- What are the fields in each record?
 How are they encoded? (e.g., strings, numbers, binary, dates ...)
 What is the type of the data?

Key Data Properties to Consider in EDA

- Structure -- the "shape" of a data file
- > Granularity -- how fine/coarse is each datum
- > Scope -- how (in)complete is the data
- > Temporality -- how is the data situated in time
- > Faithfulness -- how well does the data capture "reality"

Key Data Properties to Consider in EDA

- > Structure -- the "shape" of a data file
- Granularity -- how fine/coarse is each datum
- > Scope -- how (in)complete is the data
- > Temporality -- how is the data situated in time
- > Faithfulness -- how well does the data capture "reality"

Granularity

- > What does each record represent?
- Examples: a purchase, a person, a group of users
- Do all records capture granularity at the same level?
 Some data will include summaries as records
- If the data are coarse how was it aggregated?
 Sampling, averaging, ...
- > What kinds of aggregation is possible/desirable?
 - From individual people to demographic groups?
 From individual events to totals across time or regions?
 - Hierarchies (city/county/state, second/minute/hour/days)
 - Interdictines (city/coonty/state, second/minore/noor/ady
- Understanding and manipulating granularity can help reveal patterns.

Reviewing Group By and Pivot

Manipulating Granularity: Group By Key Data 1 B 1 Split into Groups В А В 5 С

Manipulating Granularity: Pivot	
n BU 5	
n B V 7	

Key Data Properties to Consider in EDA

- > Structure -- the "shape" of a data file
- Granularity -- how fine/coarse is each datum
- > Scope -- how (in)complete is the data
- > Temporality -- how is the data situated in time
- > Faithfulness -- how well does the data capture "reality"

Key Data Properties to Consider in EDA

- > Structure -- the "shape" of a data file
- > Granularity -- how fine/coarse is each datum
- Scope -- how (in)complete is the data
- > Temporality -- how is the data situated in time
- > Faithfulness -- how well does the data capture "reality"

Scope

Does my data cover my area of interest?
 Example: I am interested in studying crime in California but I only have Berkeley crime data.

- > Is my data too expansive?
 > Example: I am interested in student grades for DS100 but have student grades for all statistics classes.
 > Solution: Filtering → Implications on sample?
 > If the data is a sample I may have poor coverage after filtering ...
- > Does my data cover the right time frame?

> More on this in temporality ...

To be continued ...

In the next lecture