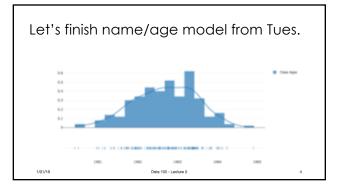
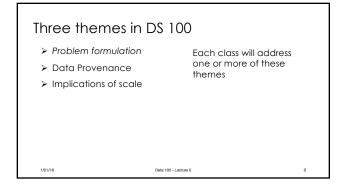

Announcements for Today


- > Midterm is scheduled for March 8 during class
- We will try using Google forms today, but may need to resort to clickers/cell phone

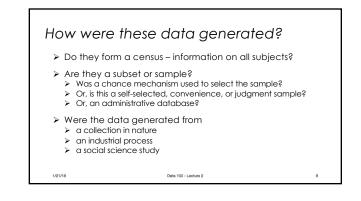

Data 100 - Lecture 2

- Slides and notes from lecture available online at <u>http://ds100.org/sp18</u>
- > HW 1 will be released next Tuesday (Jan 23).

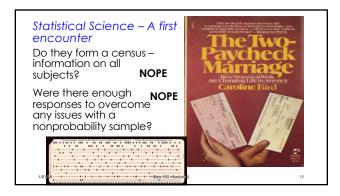
1/21/18

Data Provenance We take a narrow approach to this topic

Data 100 - Lecture 2


1/21/18


How were these data generated?


- The mechanisms by which the data arose impacts whether we can answer the question of interest
- Can we generalize beyond what we observe in our data?

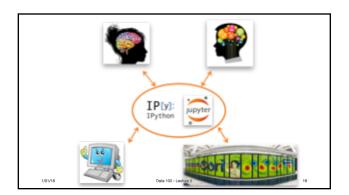
Deta 100 - Lecture 2

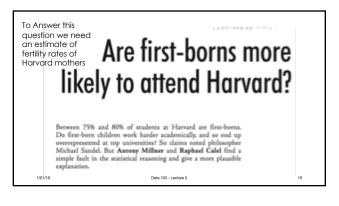
1/21/18

3

15

The purpose of computing is insight, not numbers.		
	Numerical Methods for Scie	Hamming entists and eers (1962)
1/21/18	Data 100 - Lecture 2	14


Lessons Learned


1/21/18

Good Data Analysis ≠ Simple Application of a Statistics Recipe

Good Data Analysis ≠ Simple Application of Statistical Software

Data 100 - Lecture 2

DETOUR:

1/21/18

 What is a simple random sample?
Why is it so desirable?
Can we make up for not having a SRS with big data?

What is a Simple Random Sample?

The Simple Random Sample

- > Suppose we have a population with N subjects
- \succ We want to sample **n** of them

1/21/18

The SRS is a random sample where every possible unique subset of n subjects has the same chance of appearing in the sample

Data 100 - Lecture 2

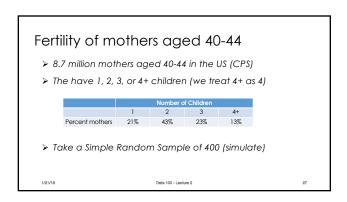
This means each person is equally likely to be in the sample

Why is the SRS so Useful?

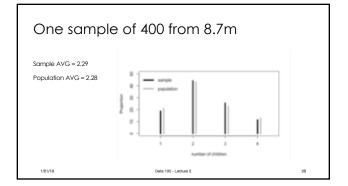
The Advantages of a SRS

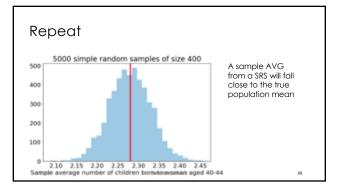
- Representative: The sample tends to look like the population
- Statistics based on the sample tend to be close to statistics based on the population
- We can provide typical deviations of sample statistics from population values.

Data 100 - Lecture 2


➤ AND MORE...

1/21/18


Fertility of mothers aged 40-44


Deta 100 - Lecture 2

1/21/18

6

Can we make up for no SRS with Big Data?

Data 100 - Lecture 2

30

1/21/18

33

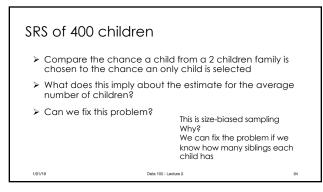
Please also answer the following questions:

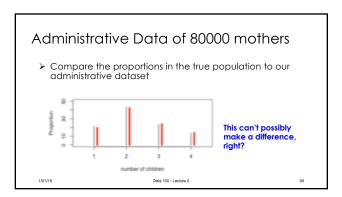
- Are you your birth mother's first born?
- How many children does your birth mother have? (including you)

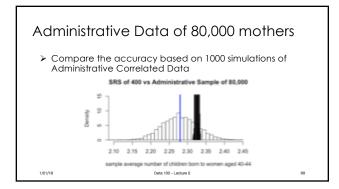
1/21/18 Data 100 - Lacture 2

Three possibilities

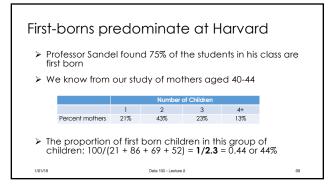
➢ SRS of 400 mothers

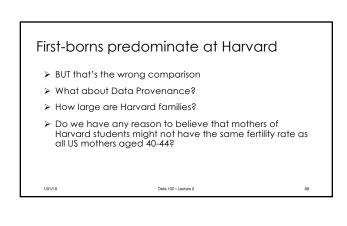

1/21/18

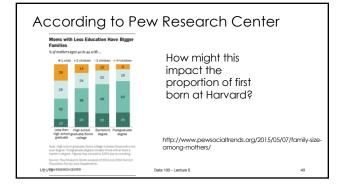

32

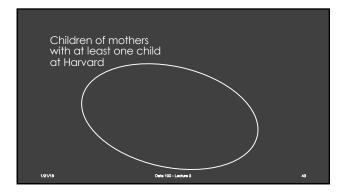

- ➢ SRS of 400 of the children
- An administrative dataset with 80,000 mothers, where those with more children are slightly more likely to be included in the database

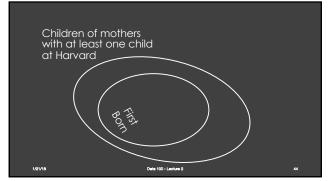
Data 100 - Lecture 2

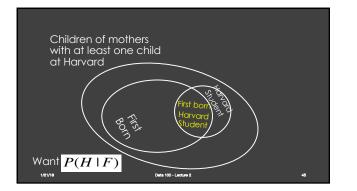

Which of these three approaches better?



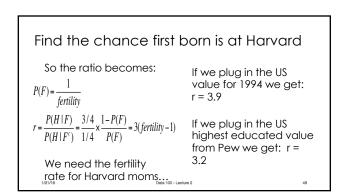


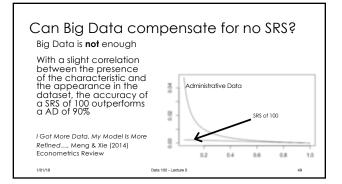






Are first-borns more likely to attend Harvard?





Find the chance f We want to find the chance you are a Harvard student given you are first born (F) and Compare it to the chance you are a Harvard student given you are not first born	(H) $P(H F) = \frac{P(H \cap F)}{P(F)}$ $P(H F^{c}) = \frac{P(H \cap F^{c})}{P(F^{c})}$	ł
1/21/18	Data 100 - Lecture 2	48

Find the chance first born is at Harvard			
Recall $P(H \cap F) = P(H)P(F \mid H)$	So the ratio becomes:		
Which implies Bayes Rule	$\frac{P(H \mid F)}{P(H \mid F^c)} = \frac{P(F \mid H)}{P(F^c \mid H)} \times \frac{1 - P(F)}{P(F)}$		
$P(H \mid F) = \frac{P(H)P(F \mid H)}{P(F)}$	Professor observed ¾ for P(F H). But we need the fertility rate for Harvard moms		
1/21/18	Data 100 - Leoture 2 47		

