DS 100: Principles and Techniques of Data Science

Date: March 23, 2018

Discussion #8

Name:

Bias Variance Tradeoff and Regularization

- 1. What happens to the bias, validation error and test error as the regularization parameter λ increases? Draw a picture.
- 2. As model complexity increases, what happens to the bias-variance tradeoff?
- 3. Ridge regression is a variant of least squares that involves regularization. It is defined as follows:

$$\min_{\vec{\theta}} L(\vec{\theta}) = \min_{\vec{\theta}} ||\vec{y} - X\vec{\theta}||_2^2 + \lambda ||\vec{\theta}||_2^2 = \min_{\vec{\theta}} \sum_{i=1}^n (y_i - \vec{x_i}^T \vec{\theta})^2 + \lambda \sum_{j=1}^d \theta_j^2$$

Here, λ is a hyper parameter that determines the impact of the regularization term. X is a $n \times d$ matrix, $\vec{\theta}$ is a $d \times 1$ vector and \vec{y} is a $n \times 1$ vector. Find the optimal $\vec{\theta}^*$.

- 4. How does the bias-variance tradeoff of a ridge regression estimator compare with that of ordinary least squares regression?
- 5. In ridge regression, what happens if we set $\lambda = 0$? What happens as λ approaches ∞ ?
- 6. If we have a large number of features (10,000+) and we suspect that only a handful of features are useful, which type of regression (Lasso vs Ridge) would be more helpful in interpreting useful features?
- 7. What are the benefits of using ridge regression?

Cross Validation

- 8. Describe the k-fold cross validation procedure and why we might use it in developing models.
- 9. We are computing the loss over our data/predictions using squared loss with the Lasso regularization function:

$$\min_{\vec{\theta}} \sum_{i=1}^{n} (y_i - \vec{x_i}^T \vec{\theta})^2 + \lambda \sum_{j=1}^{d} |\theta_j|$$

In order to implement k-fold cross validation, we can run the following pseudocode:

```
for lambda in lambdas:
for fold in folds:
    calculate MSE Lasso(X_test[fold], X_train[fold],
        Y_train[fold], Y_train[fold], lambda)
```

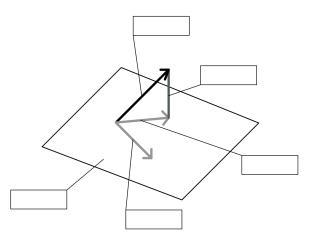
After running k-fold cross validation, we get the following mean squared errors for each fold and value of λ :

Fold Num	$\lambda = 0.1$	$\lambda = 0.2$	$\lambda = 0.3$	$\lambda = 0.4$	Row Avg
1	80.2	70.2	91.2	91.8	83.4
2	76.8	66.8	88.8	98.8	82.8
3	81.5	71.5	86.5	88.5	82.0
4	79.4	68.4	92.3	92.4	83.1
5	77.3	67.3	93.4	94.3	83.0
Col Avg	79.0	68.8	90.4	93.2	

Based on these results, what parameter for λ should we use? Explain.

Geometric Interpretation of Linear Regression

10. Draw the geometric interpretation of the column space of the design matrix, the response vector (\vec{y}) , the residuals, and the predictions.



- 11. From the image above, what can we say about the residuals and the column space of X? Write this mathematically and prove this statement (note: we can use linear algebra or summations)
- 12. Derive the normal equations from the fact above.
- 13. What must be be true about ϕ for the normal equation to be solvable? What does this imply about the features we select?
- 14. What does this imply about the dimension of the design matrix?