
DS 100: Principles and Techniques of Data Science Date: February 16, 2018

Discussion #4

Name:

Regular Expressions

Here’s a complete list of metacharacters:

. ˆ $ * + ? { } [] \ | ()

Some reminders on what each can do (this is not exhaustive):

"ˆ" matches the position at the beginning of
string (unless used for negation "[ˆ]")

"$" matches the position at the end of string
character.

"?" match preceding literal or sub-expression
0 or 1 times. When following "+" or "*"
results in non-greedy matching.

"+" match preceding literal or sub-expression
one or more times.

"*" match preceding literal or sub-expression
zero or more times

"." match any character except new line.

"[]" match any one of the characters inside,
accepts a range, e.g., "[a-c]".

"()" used to create a sub-expression

"\d" match any digit character. "\D" is the
complement.

"\w" match any word character (letters, digits,
underscore). "\W" is the complement.

"\s" match any whitespace character includ-
ing tabs and newlines. \S is the comple-
ment.

"\b" match boundary between words

Some useful re package functions:

re.split(pattern, string) split the
string at substrings that match the
pattern. Returns a list.

re.sub(pattern, replace, string)
apply the pattern to string replac-
ing matching substrings with replace.
Returns a string.

1

Discussion #4 2

Reading Regex

1. Given the text,

<record> Joseph Gonzalez <jegonzal@berkeley.edu> Faculty </record>
<record> Jake Soloff <jake_soloff@berkeley.edu> TA </record>

Which of the following matches exactly to the email addresses (including angle brackets)?

(a) <.*@.*>

(b) <\w*@.*?>
(c) <[ˆ>]*>

2. Which strings contain a match for the following regular expression, abc?$

(a) Know your abcs

(b) Did you say abc?

(c) Hi ab

3. For each pattern specify the starting and ending position of the first match in the string.

abcdefg abcs! ab abc abc, 123
abc* 1–3

[ˆ\s]+
ab.*c

[a-z1,9]+

Writing Regex

4.

(a) Write a regular expression that matches a string that contains only lowercase letters and
numbers (including empty string).

(b) Given text = "123 Fake Street", use methods in REmodule to abbreviate "Street"
as "St.". The result should look like "123 Fake St.".

(c) Given text2 = "October 10, November 11, December 12, January 1",
use methods in RE module to extract all the numbers in the string. The result should look
like ["10", "11", "12", "1"].

