
Data 100
Lecture 23:
Web Scraping Technologies

?

Ex 1. We are interested in
Men’s 1500m world
records – found in a
Wikipedia table
https://en.wikipedia.org/wiki/1500_metres_world_record_pro

gression

Wikipedia Page

Table of run times and dates

Ø We want to scrape
the times and dates
that appear in this
table on the Web
page

Ex 2. We are interested in
gas prices - available from
web forms on CA Energy
Commission’s site
https://ww2.energy.ca.gov/almanac/transportation_data/g

asoline/margins/index_cms.php

CA Energy Commission

Tables of Weekly Gas Prices

Want Data for Additional Years

Ex 3. We want to study
global climate models -
available from World Bank

World Bank REST API

Instructions for
how to
retrieve data
their data files

Today
Data Scientists retrieve data from the Web
programmatically

Ø Pandas, BeautifulSoup, and lxml libraries

Ø Formats: HTML, XML, and JSON

Ø Trees: XPath and BeautifulSoup

Ø HTTP – Get and Post, and REST APIs

HTTP – Hypertext Transfer Protocol

HTTP
Hypertext Transfer Protocol

Ø Created at CERN by Tim Berners-Lee in 1989 as part of
the World Wide Web

Ø Started as a simple request-response protocol used by
web servers and browsers to access hypertext

Ø Widely used exchange data and provides services:
Ø Access webpage & submit forms
Ø Common API to data and services across the internet

Ø Foundation of modern REST APIs

Request – Response Protocol

Enter

Request

GET /wiki/1500_metres_world_record_progression HTTP/1.1
HOST: ds100.org
User-Agent: python-requests/2.22.0
Accept-Encoding: gzip, deflate
Accept: */*
Connection: keep-alive

H
ea

d
er

Client Server

First line contains:
GET /wiki/1500…progression HTTP/1.1
Ø a method, e.g., GET or POST
Ø a URL or path to the document
Ø the protocol and its version

Remaining Header Lines
Ø Key–value pairs
Ø Specify a range of attributes

Optional Body
Ø send extra parameters & data

Request – Response Protocol

Enter

Request
Client Server

HTTP/1.1 200 OK
Date: Mon, 11 Nov 2019 22:20:16 GMT
Content-Type: text/html; charset=UTF-8
Server: mw1266.eqiad.wmnet
Content-Encoding: gzip
Content-Length: 19310

H
ea

d
er

<!DOCTYPE html>\n<html class="client-nojs" lang="en"
dir="ltr">\n<head>\n<meta charset="UTF-8"/>\n<title>1500 metres
world record progression - Wikipedia</title> …Bo

d
y

Response

Ø First line contains status
code

Ø Key-Value Pair Lines
Ø Data properties

Ø Body
Ø Returned data
Ø HTML/JSON/Bytes

In a Web Browser

Request

Response

Request Types (Main Types)
Ø GET – get information

Ø Parameters passed in URI (limited to ~2000 characters)
Ø /app/user_info.json?username=mejoeyg&version=now
Ø Request body is typically ignored

Ø Should not have side-effects (e.g., update user info)
Ø Can be cached in on server, network, or in browser (bookmarks)

Ø POST – send information
Ø Parameters passed in URI and BODY
Ø May and typically will have side-effects
Ø Often used with web forms.
Ø Related requests: PUT, DELETE

Response Status Codes
Ø 100s Informational – Communication continuing, more input

expected from client or server

Ø 200 Success - e.g., 200 - general success;

Ø 300s Redirection or Conditional Action – requested URL is
located somewhere else.

Ø 400s Client Error
Ø 404 indicates the document was not found
Ø 403 indicates that the server understood the request but refuses to

authorize it

Ø 500s Internal Server Error or Broken Request – error on the
server side

Managing Requests: requests Library

res = requests.get(url)

Access the request status with res.status_code

Access the request method with res.request.method
Access the request header with res.request.headers

Access the response header with res.headers
Access the response body (content) with res.content

GET Method

Getting data from tables
on the Web
Starting Simple with Pandas

Pandas read_html

Ø Loads tables from web pages
Ø Looks for <table></table> tags
Ø Table needs to be well formatted
Ø Returns a list of DataFrames

Ø Can load directly from URL
Ø Careful! Data changes. Save a copy on the Web page

contents with your analysis

Ø You will often need to do additional transformations to
prepare the data

HTML –
HyperText Markup Language

Simple HTML Document

<html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">
<head>

<title>Example</title>
</head>
<body>

<h2>Simple HTML page</h2>
<p> A <i>paragraph</i> about the table

below.
</p>

<table id="mydata" border="1"
cellpadding="4">

<tr><th>X</th><th>Y</th></tr>
<tr><td>$1.25</td><td>17</td></tr>
<tr><td>$2.50</td><td>25</td></tr>
<tr><td>$2.00</td><td>22</td></tr>

</table>
</body>
</html>

Many Tables on the 1500m page

This is the
table we
want.

Use Browser to Examine page source
Here’s the
HTML for the
table we
want.

Notice the
name Zander

Pandas extracts tables from HTML
documents as a list of data frames

Clean and Transform Data
Ø Need times in

seconds

Ø Some times have +-
signs, e.g., 3:42.8+

Ø Dates need to be
converted into date
format

XML
eXtensible Markup Language

HTML/XML/JSON

Ø Most services will exchange data in XML and/or JSON

Ø Why?
Ø Descriptive

Ø Can maintain meta-data
Ø Extensible

Ø Organization can change and maintain compatibility
Ø Human readable

Ø Useful for debugging and provides a common interface
Ø Machine readable

Ø A wide range of technologies for parsing

XML is a
standard for
semantic,
hierarchical
representation
of data

Syntax
The basic unit of XML code is called an
“element” or “node”
Each Node has a start tag and end tag

<zone>4</zone>

Start tag End tag

Content

Syntax: Nesting
A node may contain other nodes (children) in
addition to plain text content.

<plant type='a'>

<zone>4</zone>

<light>Mostly Shady</light>

</plant>

Start tag

End tag

Content consists of
two nodes

Indentation is not
needed. It simply
shows the nesting

Syntax: Empty Nodes

<plant>

<zone></zone>

<light/>

</plant>

These two nodes
are empty
Both formats are
acceptable

Syntax: Attributes
Nodes may have attributes (and attribute
values)

<plant type='a'>

<zone></zone>

<light source="2" class="new"/>

</plant>

The attribute named type
has a value of “a”

This empty node
has two attributes:
source and class

Syntax: Comments
Comments can appear anywhere

<plant>

<!–- elem with content -->

<zone>4 <!–- a second comment --></zone>

<light>Mostly Shady</light>

</plant>

Two comments

Well-formed XML
Ø An element must have both an open and

closing tag. However, if it is empty, then it can
be of the form <tagname/>.

Ø Tags must nest properly.
Ø Bad!: <plant><kind></plant></kind>

Ø Tag names are case-sensitive; start and end tags
must match exactly.

Ø No spaces are allowed between < and tag
name.

Ø Tag names must begin with a letter and contain
only alphanumeric characters.

Well-formed XML:

Ø All attributes must appear in quotes:

name = "value"

Ø Isolated markup characters must be specified via entity
references. < is specified by < and > is specified by
>.

Ø All XML documents must have one root node that
contains all the other nodes.

xHTML: Extensible Hypertext Markup Language

Ø HTML is an XML-”like” structure à Pre-dated XML
Ø HTML is often not well-formed, which makes it difficult to parse

and locate content,
Ø Special parsers “fix” the HTML to make it well-formed

Ø Results in even worse HTML

Ø xHTML was introduced to bridge HTML and XML
Ø Adopted by many webpages
Ø Can be easily parsed and queried by XML tools

DOM – Document Object
Model
A tree representation

DOM: Document Object Model
Ø Treat XML & HTML as a Tree

Ø Fits XML and well-formed HTML

Ø Visual containment à
children

Ø Manipulated dynamically
using JavaScript
Ø Parsing in Python à Selenium +

Headless Chrome … (out of
scope)

Tree terminology

Ø There is only one root (AKA document node) in the tree,
and all other nodes are contained within it.

Ø We think of these other nodes as descendants of the
root node.

Ø We use the language of a family tree to refer to
relationships between nodes.

Ø parents, children, siblings, ancestors, descendants

Ø The terminal nodes in a tree are also known as leaf
nodes. Text content always falls in a leaf node.

catalog

common

Bloodroot

availabilitylight pricezonebotanical

Sangui… Mostly… $2.44 0315994

plant plant

1. Retrieve common names of all plants

2. Retrieve plants that grow in zone 4

3. Retrieve common names of plants that grow in zone 4

4. Retrieve prices of plants whose prices are listed in USD

Four Tasks

Beautiful Soup
Locate nodes and content in a well-formed XML document

catalog

common

Bloodroot

botanical

Sangui…

zone

4

light

Mostly…

price

$2.44

availability

031599

plant plant

common

Cardinal

botanical

Label…

zone

2

light

Shade

price

$3.02

availability

02299

1.

2.

catalog

common

Bloodroot

botanical

Sangui…

zone

4

light

Mostly…

price

$2.44

availability

031599

plant plant

common

Cardinal

botanical

Label…

zone

2

light

Shade

price

$3.02

availability

02299

1.

2.

catalog

common

Bloodroot

botanical

Sangui…

zone

4

light

Mostly…

price

$2.44

availability

031599

plant plant

common

Cardinal

botanical

Label…

zone

2

light

Shade

price

$3.02

availability

02299

1.

2.

3.

4.

catalog

common

Bloodroot

botanical

Sangui…

zone

4

light

Mostly…

price

$2.44

availability

031599

plant plant

common

Cardinal

botanical

Label…

zone

2

light

Shade

price

$3.02

availability

02299

1.

2.

XPath
Locate nodes and content in a well-formed XML document

What is XPath?

Ø Extraction tool designed for locating content in an
XML/HTML file

Ø Uses the DOM hierarchy of a well-formed XML document
to specify the desired chunks to extract

Ø An XPath expression is a location path that is made up of
location steps separated by forward slash /

Ø Syntax is similar to but more powerful than the way files
are located in a hierarchy of directories in a computer
file system

1. Retrieve common names of all plants

2. Retrieve plants that grow in zone 4

3. Retrieve common names of plants that grow in zone 4

4. Retrieve prices of plants whose prices are listed in USD

Four Tasks

catalog

common

Bloodroot

botanical

Sangui…

zone

4

light

Mostly…

price

$2.44

availability

031599

plant plant

common

Cardinal

botanical

Label…

zone

2

light

Shade

price

$3.02

availability

02299

//plant/common/text()
1.

2.

3.Retrieve
common
names of all
plants

availability

catalog

Common

Bloodroot

botanical

Sangui…

zone

4

light

Mostly…

price

$2.44

availability

031599

plant plant

common

Cardinal

botanical

Label…

zone

2

light

Shade

price

$3.02 02299

//plant[zone/text() = ‘4’]

X

1.

Retrieve
plants that
grow in
zone 4

availability

catalog

common

Bloodroot

botanical

Sangui…

zone

4

light

Mostly…

price

$2.44

availability

031599

plant plant

common

Cardinal

botanical

Label…

zone

2

light

Shade

price

$3.02 02299

3 ways to locate
zone nodes

/catalog/plant/zone/

//zone

//plant/zone

1.

2.

3.

What’s the difference between these 3
XPath expressions?
/catalog/plant/zone – Any zone node that is a child of
plant and grandchild of catalog

//zone – Any zone node anywhere in document are
located

//plant/zone – Any zone node that is a child of a plant
node anywhere in document

For this document these XPath expressions are equivalent

availability

catalog

Common

Bloodroot

botanical

Sangui…

zone

4

light

Mostly…

price

$2.44

availability

031599

plant plant

common

Cardinal

botanical

Label…

zone

2

light

Shade

price

$3.02 02299

//plant[zone/text() = ‘4’]/common/text()

Retrieve
common names
of plants that
grow in zone 4

/catalog/plant/zone[text() = ‘4’]/common/text()

//common[../zone/text() = ‘4’]/text() yellkey.com/large

availability

catalog

Common

Bloodroot

botanical

Sangui…

zone

4

light

Mostly…

price

$2.44

availability

031599

plant plant

common

Cardinal

botanical

Label…

zone

2

light

Shade

price

$3.02 02299

//plant[zone/text() = ‘4’]/common/text()

X

1.

2.

3.

Retrieve
common names
of plants that
grow in zone 4

availability

catalog

Common

Bloodroot

botanical

Sangui…

zone

4

light

Mostly…

price

$2.44

availability

031599

plant plant

common

Cardinal

botanical

Label…

zone

2

light

Shade

price

$3.02 02299

//price[@currency= ‘USD’]

X

Retrieve prices of
plants whose
prices are listed
in USD

XPath syntax

Ø Each step has three parts:
Ø Axis (direction)
Ø Nodetest, and
Ø Predicate (optional)

XPath syntax – The axis

The axis is the direction to look (from the current location):

Ø up the tree one level to the parent,
Ø up the tree to all ancestors,
Ø across to older siblings (to the left),
Ø across to younger siblings (to the right),
Ø down the tree to child nodes,
Ø down the tree to any descendant

Simple XPath axes have shortcuts

Ø “child”, which is the default and can be dropped,

Ø “descendant-or-self”, which looks anywhere down
the tree from current node(s) is abbreviated by “//”

Ø “self” is abbreviated with a .

Ø “parent” is abbreviated to ..

Axis shortcuts
Child axis /catalog/plant/common

Descendant or self //common

Parent of common //common/.. catalog

common

Bloodroot

botanical

Sangui…

zone

4

light

Mostly…

price

$2.44

availability

031599

plant plant

common

Cardinal

botanical

Label…

zone

2

light

Shade

price

$3.02

XPath syntax – The nodetest

Ø The nodetest is typically a node name that you wish to
locate

Ø For our purposes, the nodetest will always be a node
name or text() for the text content or @attributename for
that value of an attribute

XPath expressions – The predicate

Ø The predicate filters the qualifying nodes, i.e., takes a
subset of them.

Ø The predicate is optional and for our purposes will either be
Ø a number, which asks for a specific element, e.g. [2] for the

second node
Ø an attribute filter, e.g.,

//plant[zone = “4” or light = “Shade”]

Ex 1. Wikipedia Tables

We use the requests library to access the web page.
http://docs.python-requests.org/en/master/

We “get” the page

Create an HTML
“tree”

We use the lxml library to create a “tree” consisting of
page contents.
http://lxml.de/tutorial.html /

Where in the page are
the data?

Extract the run times

Extract the dates

Extract the names

HTTP & XPath

Ø We used HTTP to access the Wikipedia page

Ø We used XPath to extract the text content of interest
from the page

Ø We can also use Beautiful Soup (see notebook)

Ø Pandas can extract the table too (see notebook).

Ø When the data are not in a table then knowing XPath
(and Beautiful Soup) can be valuable.

Ex. 2: Acquiring Data
from Web forms

View Source
<select> widget

POST
method

<input> widget

POST Method

Ø Requests the server to accept the entity enclosed in the
body of the request

Ø For example, the information in a web form to a data
handling process

Notice the POST
method

The body of the POST
request contains the
form information

Ex 3. A REST
request for

climate
simulation

data

REST - Representational
State Transfer

World Bank Climate Data REST requests

Ø From documentation, we need to create requests with
URLs like:

wbc_url = "http://climatedataapi.worldbank.org/climateweb/rest/v1/country/
mavg/bccr_bcm2_0/pr/2020/2039/CAN"

The header tells us that
the body of the request
is JSON formatted

Our request was
successful

JSON: JavaScript Object Notation
Ø Recursive datatype

Ø Data inside of data

Ø Value is a:
Ø A basic type:

Ø String
Ø Number
Ø true/false
Ø Null

Ø Array of Values
Ø A dictionary of

key:Value pairs

“Key”: Value

[Array]

Object

Basic Type (String)

Scraping Etiquette

Before you scrape:

Ø Check to see if CSV, JSON, or XML version of an HTML
page are available – better to use those

Ø Check to see if there is a Python library that provides
structured access (e.g., tweetPy)

Ø Check that you have permission to scrape

If you do scrape:

Ø Be careful to not overburden the site with your requests

Ø Test code on small requests

Ø Save the results of each request so you don’t have to
repeat the request unnecessarily

