

Data 100 Lecture 7: EDA & - Visualization

Exploratory Data Analysis (EDA)

"Getting to know the data"

A process of transforming, visualizing, and summarizing data to:

- Build/confirm understanding of the data
- Identify and address potential issues in data
- Inform the subsequent analysis
- Discover potential relationships

> EDA is an open-ended analysis

Be willing to find something surprising

Exploratory Data Analysis (EDA)

"Getting to know the data"

- We used EDA with the CO₂ data and DAWN data to check the quality of the data.
- > We also use EDA to help prepare for formal modeling.
- We also use EDA to confirm our modeling was reasonable
- Plots can uncover features, distributions, and relationships that can't be detected from numerical summaries

John Tukey Princeton Mathematician & Statistician

Introduced
Fast Fourier Transform
Exploratory Data Analysis
"Bit": <u>binary digit</u>

Early Data Scientist

Data Analysis & Statistics, Tukey 1965 Image from LIFE Magazine

EDA is like detective work

"Exploratory data analysis is an attitude, a state of flexibility, a willingness to look for those things that we believe are not there, as well as those that we believe to be there."

> Data Analysis & Statistics, Tukey 1965 Image from LIFE Magazine

EDA is Active and Incisive

"Exploratory data analysis is actively incisive rather than passively descriptive, with real emphasis on the discovery of the unexpected."

> Data Analysis & Statistics, Tukey 1965 Image from LIFE Magazine

The Variable Represents

The Variable Represents

Urban Dictionary:

Go and be a good example to the others of your group or in your position

Huh?

A Variable represents a feature

It is distinct from it's coding in a data file or data frame. It is more than a column in a table.

Could be measured to arbitrary precision.

Examples:

- Price
- Temperature

Finite possible values

• Number of siblings

Yrs of education

Examples:

Categories w/ levels but no consistent meaning to difference

Categories w/ no specific ordering.

Examples:

- Preferences
- Level of education

Examples:

- Political Affiliation
- CalD number

	Quantitative Continuous	Quantitative Discrete	Qualitative Nominal	Qualitive Ordinal
CO ₂ level	\times			
Number of siblings		X		
GPA	X			
Income bracket				X
Race			$\boldsymbol{\times}$	
Number of years of education		\times		
Yelp Rating				$\boldsymbol{\times}$
Lane of traffic (left, middle, right)			$\boldsymbol{\lambda}$	
GRADE in 100				\mathbf{X}

Basic Plots

Match Variable Type to Plot Type

Basic Visualizations

 \succ How to choose the "right" one(s)

\succ How to read them –

- Distributions
- ➤ Relationships

Kaiser Study

Oakland Kaiser mothers

Data provenance:

Mothers who use Kaiser

Starts as administrative dataset, expanded into study with new data

Selection mechanism **not** random

- > Measure the babies weight (in ounces) at birth
- > All babies:

► 1960s

- > Male
- Single births (no twins, etc.)
- Survived 28 days

Information collected on mother's and their babies

- > Birth weight (ounces) Quantitative Continuous
- Gestation (weeks)
- > Parity total number of previous pregnancies Quantitative

Signore

Zualitative

Ordina

- Mother's height and weight
- > Mother's smoking status
- > Mother's age, race, education level, income level
- > Father's information and more...

One Variable

What is the Distribution of the values of the variable?

Quantitative – Continuous

Birthweight

The most basic visual representation of one quantitative variable is the rug plot

Hard to see much of the distribution with this rug plot

Birthweight

With the histogram we hide the details of individual observations and view the general features of the distribution.

How would we describe the distribution of birth weight?

Distribution Features

Modes

- Number 1
- Location near 120 02
- Size main mode
- Tails •
 - Long, short, "normal"

- Gaps
- **Outliers**

Normal Tails

Distributions & Smoothing

A Small Dataset

We want to smooth these rug threads

BECAUSE

- this is a sample and we believe that other values near the ones we observed are reasonable
- we want to focus on general structure rather than individual observations

Important Properties of Histograms

- > Total Area of the bars = 100% (or 1)
- > Units on the y-axis are percent/x-unit
- > Area of a bar = percentage of values in that bar unit matching: x-units km y-units $\frac{7}{km}$

Example - One large bin from 0 to 5

A histogram smooths

We want to smooth out these points because:

- this is a sample and we believe that other values near the ones we observed are reasonable
- we want to focus on general structure rather than individual observations

The values 3.1, 3.6, and 4.8 have their proportion (3/10) spread over the bin [3,5] That is, without the rug, we can't tell where the points are in the bin

Kernel Density Estimate: Alternative Smoother

Consider one point

Smooth with a kernel function, rather than in a histogram bin

3 points – each represents 1/3 of the data

The software chouses a kernel bandwidth For you, but you can also specify your own.

Compare the Histogram and the KDE 0.7, 0.8, 0.9, 2.1, 2.2, 2.8, 2.9, 3.1, 3.6, 4.8

Birthweight – Density Curve

How would we describe the distribution of birth weight?

Unimodal

Main mode at 120 oz

Slight left skew

Tails about normal

Histograms and Density Curves

Describes distribution of data – relative prevalence of values

- ➤ Histogram
 - relative frequency of values
 - Tradeoff of bin sizes
- Rug Plot
 - Shows the actual data locations
- > Smoothed density estimator ^{0.}
 - Tradeoff of "bandwidth" 0.0 parameter (more on this later) 0.0

Box Plot

Tukey invented the box plot AKA box and whisker plot

Useful for summarizing distributions and comparing multiple distributions

Our Data $\begin{array}{c}1 & 2 & 3 & 4\\0.7, 0.8, 0.9, 2.1, 2.2, 2.8\end{array}$ 2.9, 3.1, 3.6, 4.8 Count in Tukey's short cut for finding these values Median N = # obs =10 > Lower Quartile median is the <u>n+1</u> smallest Z largest obs IQR $=\frac{10+1}{2}=5.5$ average the 5th 26th ➤ Hinge $\text{Median} = \frac{2.2 + 2.8}{2} = 2.5$

Our Data $\begin{pmatrix} 1 & 2 & 3 \\ 0.7, 0.8, 0.9 \end{pmatrix}$ 2.1, 2.2, 2.8, 2.9, 3.1, 3.6, 4.8

> Median To find the quartiles, we take the count-Lower Quartile down value for the midian, drop the 1/2 (if it hasit), omd add one & divide by 2, eq., ≻ IQR $5.5 \longrightarrow \frac{5+1}{2} = 3$ ➤ Hinge LQ is 3 in from bo Hom IQR is UQ-LQ UQ is zinfrom = 3.1 - 0.9 = 2.2top Hinge is 1.5 IQR = 1.5 × 2.2 = 3.3 More than 3.3 away from LQ/UQ is an outlier

Quartiles from Tukey's "depth"

- > Depth of the Median = (n + 1)/2
 - Count in from top or bottom of ordered set of values
 - > If depth has a half then average the two values on either side
- > Depth of Quartile = (round(m) + 1)/2
 - Round the median depth down to nearest integer
 - Count in from bottom to get the LQ and from the top to get the UQ
 - If depth has a half in it then average the two values on either side

Percentile – with weighted data

 \succ The Pth percentile of a set of data is:

Smallest value that has at least P% of the data at or below it

sorted 5. 5. 5. 5. 5. 5. 20. 20. 20. 20. 50. 50. 50. sum to $\frac{\text{corrispondin}}{2} \frac{1}{2} \frac{1}{2$ $\frac{7}{8} = 87.5$ is at or below 20 > nothing $\frac{3}{8} = 37.5$ is at or below 5 > in between $75^{\text{th}}\%$ tile = 2D

Quantitative Discrete

We look for the same features

- > Symmetry and skew
- > Modes (number, location, and size)
- > Tails (long, short, normal)
- > Gaps
- > Outliers

Discrete Quantitative

of Siblings

What's the difference between these 2 plots?

Qualitative

We look at the relative size of groups

- Equally distributed
- > Symmetry, Modes, Tails and Gaps don't make sense
- Do most fall in one group?

Answers have implications in building prediction models

Why do we not reorder the bars according from shortest to tallest?

Pairs of Variables

Combinations:

Both qualitative,

One qualitative and one Quantitative,

Both Qualitative

Plotting Pairs of Quantitative Variables

- Scatter plot uncovers form of relationship between 2 variables
- Linear relationships are particularly simple to interpret
- Simple and elegant statistical theory for linear relationships
- Models are typically approximations, choose a simpler model over a complex one

Now we want to smooth the yvalues as a function of x

Create bins for all x Average y-values in each bin

Smoothing Scatter plotsThese averagessketch out a curve

Rather than a simple average in fixed bins

We use kernels positioned on the x_i to determine the weights to place on the y_i in the average distance from 7 $g(x) = \sum_{i=1}^{n} \frac{K_{h}(x - x_{i})}{\sum K_{h}(x - x_{i})}$

> The denominator ensures the weights sum to 1

smull/narrow kernets give wiggly roulds

Rather than a simple average

We use kernels positioned on the x_i to determine the weights to place on the y_i in the average

$$g(x) = \sum_{i=1}^{n} \frac{K_{h}(x - x_{i})y_{i}}{\sum K_{h}(x - x_{i})}$$

The denominator ensures the weights sum to 1

For each x, we find g(x) by a weighted average of the y_i

The y_i are weighted according to the kernel function. So x_i far from x do not contribute much to g(x)

Local Smoothing

- > Moving window
- Smooth/Average y values in the window
- > Many different approaches for doing this:
 - kernel methods (what we just showed),
 - \succ cubic splines, thin plate splines,
 - Locally weighted smooth scatterplot (lowess)

Allows us to see shape of the relationship between y and x

Mix Quantitative & Qualitative

Mix of Qualitative and Quantitative

Two Qualitative Variables

Pairs of Qualitative Variables

should be proportion,

Interaction/Factor Plot

Smoking status normalized within Education level

Univariate Graphical Displays

Туре	Plot
Numeric –	few observations Histogram, Density curve Box plot, Violin plot Normal quantile plot Few Observations - Rug plot, Dot plot Caution if discrete: density curves and box plots may be misleading
Categorical – Counts of categories	Dot chart Bar chart Pie chart (avoid!) Caution if ordinal –order of bars, dots, etc. should reflect category order

Bivariate Graphical Displays

	Numeric	Categorical
Numeric	Scatter plot Smooth scatter Contour plot Smooth lines and curves	Multiple histograms, density curves, Avoid jiggling!
Categorical		Side-by-side bar plot Overlaid Lines plot Side-by-side dot chart Mosaic plot Avoid stacking!

Caution about EDA

With enough data, if you look hard enough you will find something *"interesting"*

Important to differentiate inferential conclusions about world from exploratory analysis of data

Take care with EDA

EDA can provide valuable insights about the data and data collection process

BUT

- Be cautious about drawing/reporting conclusions
 - Recognize that EDA biases your view
 - Be careful about sharing plots or hypothesis without additional validation ...
- Have a lot of data? Apply EDA to sample of the data before conducting formal analysis.