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Discussion #11

Name:

Gradients
1. On the left is a 3D plot of f(x, y) = (x− 1)2 + (y − 3)2. On the right is a plot of its gradient

field. Note that the arrows show the relative magnitudes of the gradient vector.

(a) From the visualization, what do you think is the minimal value of this function and where
does it occur?

(b) Calculate the gradient ∇f =
[
∂f
∂x

∂f
∂y

]T
.

(c) When∇f = 0, what are the values of x and y?
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Gradient Descent Algorithm

2. Given the following loss function and x = (xi)
n
i=1, y = (yi)

n
i=1, βt, explicitly write out the

update equation for βt+1 in terms of xi, yi, βt, and α, where α is the step size.

L(β,x,y) =
1

n

n∑
i=1

(
β2x2i − log(yi)

)

Convexity

3. Convexity allows optimization problems to be solved more efficiently and for global optimums
to be realized. Mainly, it gives us a nice way to minimize loss (i.e. gradient descent). There
are three ways to informally define convexity.

a. Walking in a straight line between points on the function keeps you above the func-
tion. This works for any function.

b. The tangent line at any point lies below the function (globally). The function must
be differentiable.

c. The second derivative is non-negative everywhere (aka ”concave up” everywhere).
The function must be twice differentiable.

(a) Is the function described in question 1 convex? Make an argument visually.

(b) Find a counterexample for the claim that the composition of two convex functions is also
convex. h = g(f(x))
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Logistic Regression

The next two questions refer to a binary classification problem with a single feature x.

4. Based on the scatter plot of the data below, draw a reasonable approximation of the logistic
regression probability estimates for P (Y = 1 | x).

5. You have a classification data set consisting of two (x, y) pairs (1, 0) and (−1, 1).
The covariate vector x for each pair is a two-element column vector [1 x]T .

You run an algorithm to fit a model for the probability of Y = 1 given x:

P (Y = 1 | x) = σ(xTβ)

where
σ(t) =

1

1 + exp(−t)

Your algorithm returns β̂ =
[
−1

2
− 1

2

]T
(a) Calculate P̂

(
Y = 1 | x = [1 0]T

)

(b) The empirical risk using log loss (a.k.a., cross-entropy loss) is given by:

R(β) =
1

n

n∑
i=1

− log P̂ (Y = yi | xi)

= − 1

n

n∑
i=1

yi log P̂ (Y = 1 | xi) + (1− yi) log P̂ (Y = 0 | xi)
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And P̂ (Y = 1 | xi) =
exp(xi

T β)
1+exp(xi

T β)
while P̂ (Y = 0 | xi) =

1
1+exp(xi

T β)
. Therefore,

R(β) = − 1

n

n∑
i=1

yi log
exp(xi

Tβ)

1 + exp(xi
Tβ)

+ (1− yi) log
1

1 + exp(xi
Tβ)

= − 1

n

n∑
i=1

yix
T
i β + log(σ(−xTi β))

Let β = [β0 β1]. Explicitly write out the empirical risk for the data set (1, 0) and (−1, 1)
as a function of β0 and β1.

(c) Calculate the empirical risk for β̂ =
[
−1

2
− 1

2

]T and the two observations (1, 0) and
(−1, 1).


