DS 100/200: Principles and Techniques of Data Science Date: November 6, 2019
Discussion #11

Name:

Gradients

1. On the left is a 3D plot of f(x,y) = (x — 1)* + (y — 3)*. On the right is a plot of its gradient
field. Note that the arrows show the relative magnitudes of the gradient vector.
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(a) From the visualization, what do you think is the minimal value of this function and where
does it occur?

T
(b) Calculate the gradient V f = [% g—g] .

(c) When V f = 0, what are the values of = and y?
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Gradient Descent Algorithm

2. Given the following loss function and x = (x;)",, y = (y;);, (', explicitly write out the
update equation for Bt in terms of z;, s, 3%, and a, where « is the step size.

n

L(B,x,y) = %Z (8227 —log(ys))

=1

Convexity

3. Convexity allows optimization problems to be solved more efficiently and for global optimums
to be realized. Mainly, it gives us a nice way to minimize loss (i.e. gradient descent). There
are three ways to informally define convexity.

a. Walking in a straight line between points on the function keeps you above the func-
tion. This works for any function.

b. The tangent line at any point lies below the function (globally). The function must
be differentiable.

c. The second derivative is non-negative everywhere (aka “concave up” everywhere).
The function must be twice differentiable.

(a) Is the function described in question 1 convex? Make an argument visually.

(b) Find a counterexample for the claim that the composition of two convex functions is also
convex. h = g(f(x))
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Logistic Regression

The next two questions refer to a binary classification problem with a single feature x.

4. Based on the scatter plot of the data below, draw a reasonable approximation of the logistic
regression probability estimates for P (Y =1 | z).
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5. You have a classification data set consisting of two (z, y) pairs (1,0) and (—1, 1).
The covariate vector x for each pair is a two-element column vector [1  z]".

You run an algorithm to fit a model for the probability of Y = 1 given x:

P(Y =1|x)=0o(x"p)

where

Your algorithm returns 3 = =

(a) Calculate P (Y —1|x=1 O]T>

(b) The empirical risk using log loss (a.k.a., cross-entropy loss) is given by:

n

R(5) = = > " ~log B(Y = i | )

=1

1 < . )
= = ylogB(Y = 1]x) + (1 - ) log P (Y = 0] xy)
=1
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AndP (Y =1 x;) = 22070 while P (Y = 0| x;) =

e (T ) ik Therefore,

D S
Trexp(iT A
" exp(xi7 ) 1

==Y ylog PP y)log
R(5) n Z Yilos T exp(x;TB) (1 —y)log 1 + exp(x;” )

i=1

— _% Z yix) B+ log(o(—x] B))
i—1

Let 8 = [y fh]. Explicitly write out the empirical risk for the data set (1,0) and (—1, 1)
as a function of 3y and ;.

(c) Calculate the empirical risk for B = [—% — %]T and the two observations (1,0) and
(_17 1)



