DS 100/200: Principles and Techniques of Data Science

Date: October 30, 2019

Discussion # 10

Name:

Bias-Variance Trade-off

Assume that we have a function h(x) and some noise generation process that produces ε such that E [ε] = 0 and var(ε) = σ². Every time we query mother nature for Y at a given a x, she gives us Y = h(x) + ε. A new ε is generated each time, independent of the last. We randomly sample some data (x_i, y_i)ⁿ_{i=1} and use it to fit a model f_β(x) according to some procedure (e.g. OLS, Ridge, LASSO). In class, we showed that

$$\underbrace{\mathbb{E}\left[(Y - f_{\hat{\beta}}(x))^2\right]}_{\mathbb{E}\left[(Y - f_{\hat{\beta}}(x))^2\right]} = \underbrace{\sigma^2}_{\mathbb{E}\left[(h(x) - \mathbb{E}\left[f_{\hat{\beta}}(x)\right])^2 + \underbrace{\mathbb{E}\left[(\mathbb{E}\left[f_{\hat{\beta}}(x)\right] - f_{\hat{\beta}}(x))^2\right]}_{\mathbb{E}\left[(h(x) - \mathbb{E}\left[f_{\hat{\beta}}(x)\right])^2 + \underbrace{\mathbb{E}\left[(\mathbb{E}\left[f_{\hat{\beta}}(x)\right] - f_{\hat{\beta}}(x)\right]}_{\mathbb{E}\left[(h(x) - \mathbb{E}\left[f_{\hat{\beta}}(x)\right])^2 + \underbrace{\mathbb{E}\left[(h(x) - \mathbb{E}\left[f_{\hat{\beta}}(x)\right])^2$$

- (a) Label each of the terms above. Word bank: observation variance, model variance, observation bias², model bias², model risk, empirical mean square error.
- (b) What is random in the equation above? Where does the randomness come from?
- (c) True or false and explain. $\mathbb{E}\left[\epsilon f_{\hat{\beta}}(x)\right] = 0$
- (d) Suppose you lived in a world where you could collect as many data sets you would like. Given a fixed algorithm to fit a model f_{β} to your data e.g. linear regression, describe a procedure to get good estimates of $\mathbb{E}\left[f_{\hat{\beta}}(x)\right]$ (technical point: you may assume this expectation exists).
- (e) If you could collect as many data sets as you would like, how does that affect the quality of your model $f_{\beta}(x)$?

Ridge and LASSO Regression

2. Earlier, we posed the linear regression problem as follows: Find the $\vec{\beta}$ value that minimizes the average squared loss. In other words, our goal is to find $\hat{\beta}$ that satisfies the equation below:

$$\vec{\hat{\beta}} = \operatorname*{argmin}_{\vec{\beta}} L(\vec{\beta}) = \operatorname*{argmin}_{\vec{\beta}} \frac{1}{n} ||\vec{y} - \mathbb{X}\vec{\beta}||_2^2$$

Here, \mathbb{X} is a $n \times d$ matrix, $\vec{\beta}$ is a $d \times 1$ vector and \vec{y} is a $n \times 1$ vector. As we saw in lecture and in last week's discussion, the optimal $\vec{\beta}$ is given by the closed form expression $\vec{\beta} = (\mathbb{X}^t \mathbb{X})^{-1} \mathbb{X}^t \vec{y}$.

To prevent overfitting, we saw that we can instead minimize the sum of the average squared loss plus a regularization function $\lambda S(\vec{\beta})$. If use the function $S(\vec{\beta}) = ||\vec{\beta}||_2^2$, we have "ridge regression". If we use the function $S(\vec{\beta}) = ||\vec{\beta}||_1$, we have "LASSO regression". For example, if we choose $S(\vec{\beta}) = ||\vec{\beta}||_2^2$, our goal is to find $\hat{\beta}$ that satisfies the equation below:

$$\hat{\beta} = \underset{\vec{\beta}}{\operatorname{argmin}} L(\vec{\beta}) = \underset{\vec{\beta}}{\operatorname{argmin}} \frac{1}{n} ||\vec{y} - \mathbb{X}\vec{\beta}||_2^2 + \lambda ||\vec{\beta}||_2^2 = \underset{\vec{\beta}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n (y_i - \mathbb{X}_{i,\cdot}^T \vec{\beta})^2 + \lambda \sum_{j=1}^d \beta_j^2$$

Recall that λ is a hyperparameter that determines the impact of the regularization term. Though we did not discuss this in lecture, we can also find a closed form solution to ridge regression: $\vec{\beta} = (\mathbb{X}^T \mathbb{X} + n\lambda \mathbf{I})^{-1} \mathbb{X}^T \vec{y}$. It turns out that $\mathbb{X}^T \mathbb{X} + n\lambda \mathbf{I}$ is guaranteed to be invertible (unlike $\mathbb{X}^T \mathbb{X}$ which might not be invertible).

- (a) As model complexity increases, what happens to the bias and variance of the model?
- (b) In terms of bias and variance, how does a regularized model compare to ordinary least squares regression?
- (c) In ridge regression, what happens if we set $\lambda = 0$? What happens as λ approaches ∞ ?

- (d) How does model complexity compare between ridge regression and ordinary least squares regression? How does this change for large and small values of λ ?
- (e) If we have a large number of features (10,000+) and we suspect that only a handful of features are useful, which type of regression (Lasso vs Ridge) would be more helpful in interpreting useful features?
- (f) What are the benefits of using ridge regression?

Cross Validation

3. After running 5-fold cross validation, we get the following mean squared errors for each fold and value of λ :

Fold Num	$\lambda = 0.1$	$\lambda = 0.2$	$\lambda = 0.3$	$\lambda = 0.4$	Row Avg
1	80.2	70.2	91.2	91.8	83.4
2	76.8	66.8	88.8	98.8	82.8
3	81.5	71.5	86.5	88.5	82.0
4	79.4	68.4	92.3	92.4	83.1
5	77.3	67.3	93.4	94.3	83.0
Col Avg	79.0	68.8	90.4	93.2	

How do we use the information above to choose our model? Do we pick a specific fold? a specific lambda? or a specific fold-lambda pair? Explain.

4. You build a model with two regularization hyperparameters λ and γ. You have 4 good candidate values for λ and 3 possible values for γ, and you are wondering which λ, γ pair will be the best choice. If you were to perform five-fold cross-validation, how many validation errors would you need to calculate?

- 5. In the typical setup of k-fold cross validation, we use a different parameter value on each fold, compute the mean squared error of each fold and choose the parameter whose fold has the lowest loss.
 - \bigcirc A. True
 - \bigcirc B. False