
DS 100: Principles and Techniques of Data Science Date: October 2, 2019

Discussion #6

Name:

Regular Expressions

Here’s a complete list of metacharacters:

. ˆ $ * + ? { } [] \ | ()

Some reminders on what each can do (this is not exhaustive):

"ˆ" matches the position at the beginning of
string (unless used for negation "[ˆ]")

"$" matches the position at the end of string
character.

"?" match preceding literal or sub-expression
0 or 1 times.

"+" match preceding literal or sub-expression
one or more times.

"*" match preceding literal or sub-expression
zero or more times

"." match any character except new line.

"[]" match any one of the characters inside,
accepts a range, e.g., "[a-c]".

"()" used to create a sub-expression

"\d" match any digit character. "\D" is the
complement.

"\w" match any word character (letters, digits,
underscore). "\W" is the complement.

"\s" match any whitespace character includ-
ing tabs and newlines. \S is the comple-
ment.

"*?" Non-greedy version of *. Not fully dis-
cussed in class.

"\b" match boundary between words. Not dis-
cussed in class.

"+?" Non-greedy version of +. Not discussed
in class.

Some useful re package functions:

re.split(pattern, string) split the
string at substrings that match the
pattern. Returns a list.

re.sub(pattern, replace, string)
apply the pattern to string replac-

ing matching substrings with replace.
Returns a string.

re.findall(pattern, string)
Returns a list of all matches for the given
pattern in the string.

1

Discussion #6 2

Regular Expressions

1. Which strings contain a match for the following regular expression, "1+1$"? The character
" " represents a single space.

© What is 1+1 © Make a wish at 11:11 © 111 Ways to Succeed

2. Given the text:

"<record> Josh Hug <hug@cs.berkeley.edu> Faculty </record>"
"<record> Manana Hakobyan <manana.hakobyan@berkeley.edu> TA </record>"

Which of the following matches exactly to the email addresses (including angle brackets)?
© <.*@.*> © <[ˆ>]*@[ˆ>]*> © <.*@\w+\..*>

3. For each pattern specify the starting and ending position of the first match in the string. The
index starts at zero and we are using closed intervals (both endpoints are included).

abcdefg abcs! ab abc abc, 123
abc* [0, 2]

[ˆ\s]+
ab.*c

[a-z1,9]+

4. Write a regular expression that matches strings (including the empty string) that only contain
lowercase letters and numbers.

5. Write a regular expression that matches strings that contain exactly 5 vowels.

6. Given that address is a string, use re.sub to replace all vowels with a lowercase letter “o”.
For example "123 Orange Street" would be changed to "123 orongo Stroot".

Discussion #6 3

7. Given that sometext is a string, use re.sub to replace all clusters of non-vowel characters
with a single period. For example "a big moon, between us..." would be changed
to "a.i.oo.e.ee.u.".

8. Given sometext = "I’ve got 10 eggs, 20 gooses, and 30 giants.", use
re.findall to extract all the items and quantities from the string. The result should look
like [’10 eggs’, ’20 gooses’, ’30 giants’]. You may assume that a space
separates quantity and type, and that each item ends in s.

9. Given the following text in a variable log:

169.237.46.168 - - [26/Jan/2014:10:47:58 -0800]
"GET /stat141/Winter04/ HTTP/1.1" 200 2585
"http://anson.ucdavis.edu/courses/"

Fill in the regular expression in the variable pattern below so that after it executes, day is
26, month is Jan, and year is 2014.

pattern = ...
matches = re.findall(pattern, log)
day, month, year = matches[0]

