
DS 100/200: Principles and Techniques of Data Science Date: 10/25/19

Homework #6

Due Date: Friday, 11/1/19 at 11:59 PM

• You will turn in this homework by uploading your answers in PDF format
to Gradescope. You may turn in your answer as a scan or good quality camera
phone picture of handwritten sheets (e.g. CamScanner), or you may turn it in as a
PDF generated from typeset math (e.g. using LaTeX or Microsoft Word).

• For this homework we have provided a companion notebook on DataHub. It is also
linked on the course website. Problems 1, 8, and 9 explicitly ask you to run and
interpret code in this notebook. You may also find the notebook helpful for problems
2 through 6. You will not need to turn in any .ipynb files.

• Due to resource constraints, we may elect to only grade a subset of the problems. We
also may grade a subset of problems on completion, rather than on correctness. Since
you dont know which problems these are, though, its in your best interest to fully
attempt all of them.

Collaborators

Data science is a collaborative activity. While you may talk with others about the
homework, we ask that you write your solutions individually. If you do discuss the
assignments with others please include their names at the top of your submission.
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Homework #6 2

Linear Regression Fundamentals and the Normal Equa-

tion

1. In this problem, we will review some of the core concepts in linear regression.

a. Suppose we create a linear model with parameters
~̂
β = [β̂0, . . . , β̂p]. As we saw in

lecture, such a model makes predictions ŷ =
~̂
β · ~x =

∑
β̂ixi.

Suppose
~̂
β = [2, 0, 1] and we receive an observation x = [1, 2, 3]. What ŷ value will

this model predict for the given observation?

b. Suppose the correct y was 3.5. What will be the L2 loss for our prediction ŷ from
question 1a?

c. In the companion notebook for this homework, we have provided a design matrix
X and a vector of response variables ŷ. These are given as variables X and y in the
companion notebook. Suppose we create a linear regression model using this data.

Explain briefly why
~̂
β will be a 6× 1 vector.

d. Using the normal equation from lecture 16, compute the optimal
~̂
β. Rather than

giving all six values, in your answers, just tell us which of β̂0, β̂1, β̂2, β̂3, β̂4, β̂5 is
largest, and give its value rounded to two decimal places. Hint: np.linalg.inv

might be useful. Hint: x.T gives the transpose of a matrix.

e. What will our model give for ŷ1, i.e. what will it predict for the 1st observation
(i.e. row one of X). Give your answer rounded to two decimal places.

f. What is the L2 loss for this prediction? What is the residual e1?

g. In lecture we said that the β̂ that results from the normal equation will ”minimize
the empirical risk”. Does there exist a ~βother that would yield a lower loss for our
prediction ŷ1. If so, explain why we don’t use ~βother instead. If not, explain why
none exists.

Note: There are other equivalent notations for linear models. The notation we’ve
used in this problem is consistent with what we saw in Prof. Nolan’s lectures, i.e.
using arrows to represent vectors, hats to represent estimates, and betas to represent
parameters. Other sources use different notation, e.g. bolding for vectors or even
not making any typographical distinction between vectors and scalars. Hats are often
omitted. Some sources use the Greek letter θ or the English letter w instead of β.

For instance, instead of saying ŷ =
~̂
β ·~x, the Data 100 textbook uses fθ(x) = θ·x, i.e.

bold to represent vectors, theta instead of beta, and fθ(x) instead of ŷ. CS 189 uses
ŷi = w ·Xi. Data 100’s Spring 2019 lectures used E[Y |X] = XTβ. Even our own
lectures this semester are not entirely self consistent. We know it’s annoying, but
you’ll just have to get used to this lack of a common consistent symbolic language.



Homework #6 3

Observation Space vs. Variable Space

2. The “variable space” approach views the design matrix X as a collection of n×1 column
vectors, one for each variable. On the other hand, the “observation space” approach
considers the design matrix as a collection of 1×p row vectors, one for each observation.
In this exercise, we will examine many of the terms that we have been working with
in regression (e.g. β̂) and connect them to their dimensions and to concepts that they
represent. We will also draw connections between the observation and variable spaces.

First, we define some notation for the vectors in these two spaces. The n × p design
matrix X corresponds to n observations on p variables (where one of these variables
might actually be the one vector ~1, a.k.a. a bias vector). ~y is the response variable.

We assume in this problem that we use X and ~y to compute optimal parameters
~̂
β for

a linear model, and that this linear model generates predictions ~̂y from
~̂
β and X as we

saw in lecture and in question 1 of this homework. We introduce new notation on this
homework for the row and column vectors of X as follows:

~x∗j jth column vector in X, j = 1, . . . , p

~xi∗ ith row vector in X, i = 1, . . . , n

Below, on the left, we have several expressions, labelled a through h, and on the right
we have several terms, labelled 1 to 10. For each expression, determine its shape
(e.g., n× p), and match it to one the given terms. Terms may be used more than
once or not at all. If a specific expression is nonsensical because the dimensions don’t
line up for a matrix multiplication, write ”N/A” for both.

a. X

b.
~̂
β

c. ~x∗j

d. ~x1∗
~̂
β

e. ~x∗1
~̂
β

f. X~̂β

g. (XtX)−1Xt~y

h. (I − X(XtX)−1Xt)~y

1. the residuals

2. 0

3. 1st response, y1

4. 1st predicted value, ŷ1

5. 1st residual, e1

6. the estimated coefficients

7. the predicted values

8. the features for a single observation

9. the value of a specific feature for all
observations

10. the design matrix

As an example, for 2a, you would write: ”2a. Dimension: n× p, Term: 10”.



Homework #6 4

Deriving Properties of the Simple Linear Regression

In lectures 14 and 15, we spent a great deal of time talking about the simple linear
regression, which you also saw in Data 8. To briefly summarize, the simple linear re-
gression model assumes that given a vector of observations ~x, our predicted response for
each of these observations is given by ~̂y = β̂0~1 + β̂1~x. Or equivalently, given a single
observation x, our predicted response for this observation is ŷ = β̂0 + β̂1x.

In lecture 14, we focused on the observation space representation, and saw that the β̂0
and β̂1 that minimize the L2 loss for the simple linear regression model are:

β̂0 = ȳ − β1x̄

β̂1 = r
SDy

SDx

Or, rearranging terms, our predictions ŷ are:

ŷ = ȳ + rSDy
x− x̄
SDx

In lecture 15, we used the exact same model, but now switched over to the variable space
representation to get some geometric intuition for what we saw in lecture 14. The key
geometric insight was that if we train a model on ~x and ~y and we use this model to make
a prediction on a new observation x, our predicted ŷ = β̂0x+ β̂1 is simply the vector in
span(~1, ~x) that is closest to y.

Consider some useful properties of the simple linear regression, listed below. Use the
results derived from either the variable space or the observation space representation to
prove these properties.

You may find the companion notebook helpful to support your thinking. See ”Properties
of Simple Linear Regression With and Without a Constant Term”. Note: You may not
answer questions 3 - 6 by simply computing the residuals of the given dataset and noting
that the sum is zero. We want you to show that these properties are true for ALL possible
datasets.

3. Show that/explain why the residuals from the fit have an average of 0, i.e.
∑
ei = 0.

4. Show that/explain why the n×1 vectors ~x and ~e are orthogonal. In other words, explain
why the dot product (a.k.a. inner product) of any observation used to train the model
and the residuals is 0, i.e. ~x · ~e =

∑
(xiei) = 0.

5. Show that/explain why the dot product of the residuals and ~̂y is 0, i.e. ~̂y·~e =
∑

(ŷiei) = 0.

6. Show that/explain why (x̄, ȳ) is on the regression line.
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Properties of a Linear Model With No Constant Term

Suppose that we don’t include the intercept term in our model, that is, our model is now
simply ~̂y = γ̂~x, where γ̂ is the single parameter for our model that we need to optimize.

In this case, our least squares fit finds the γ that minimizes:

n∑
i=1

(yi − γxi)2

for observed data (xi, yi), i = 1, . . . , n.

The normal equations derived in lecture no longer hold. In this problem, we’ll derive a
solution to this simpler model. We’ll see that the least squares estimate of the slope in
this model differs from the simple linear regression model, and will also explore whether
or not our properties from the previous problem still hold.

7. Use calculus to find the minimizing γ̂. That is, prove that

γ̂ =

∑
xiyi∑
x2i

Note: This is the slope of our regression line, analogous to β̂1 from our simple linear
regression model.

8. In the previous section on deriving properties of estimators for a simple linear model,
you established the following properties:

•
∑
ei = 0.

• ~̂y and ~e are orthogonal.

• ~x and ~e are orthogonal.

• (x̄, ȳ) is on the regression line.

Which of these properties are still true? Support your answers by giving the values
of the following quantities as computed on the dataset given in ”Properties of Simple
Linear Regression With and Without a Constant Term” in the companion notebook for
this homework.

•
∑
ē

• ~̂y · ~e
• ~x · ~e
• γ̂x̄
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9. Recall that we can decompose the total sum of squares into two sum of squares, one
measuring the variability “explained” by the regression and the other measuring the
variability of the errors (the ei). Does this property still hold? That is,∑

i

(yi − ȳ)2
?
=

∑
i

(yi − ŷi)2 +
∑
i

(ŷi − ȳ)2

Support your answer by computing these three quantities using the dataset described in
the previous problem.


