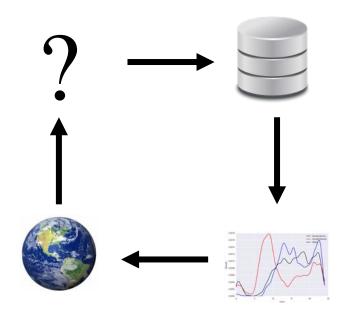
Data 100

Lecture 4: Data Cleaning & Exploratory Data Analysis

Slides by:


Joseph E. Gonzalez, Deb Nolan, Joe Hellerstein & Fernando Perez

jegonzal@berkeley.edu

deborah_nolan@berkeley.edu

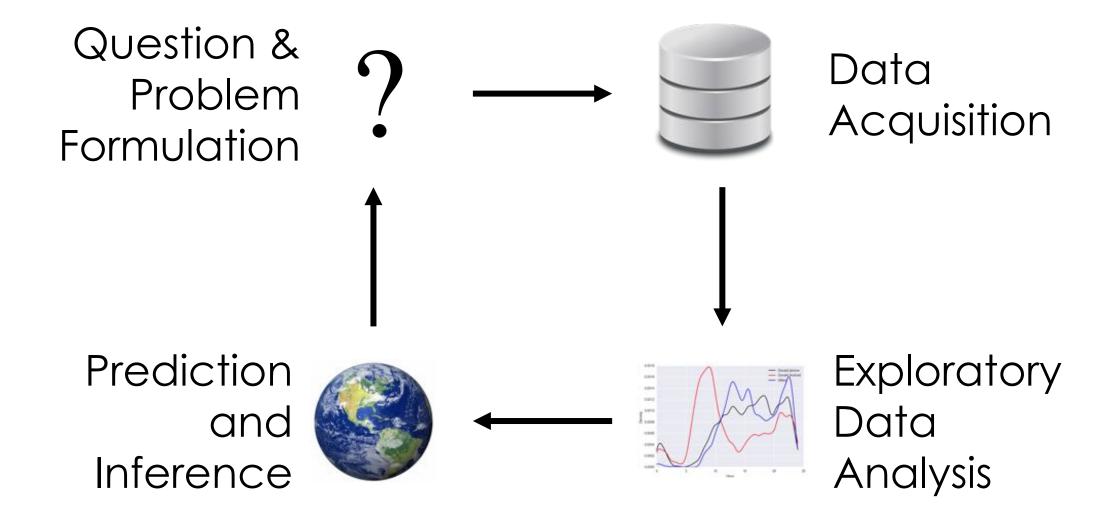
hellerstein@berkeley.edu

<u>Fernando.perez@Berkeley.edu</u>

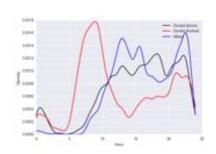
Pandas and Jupyter Notebooks

- Reviewed Jupyter Notebook Environment
- > Introduced DataFrame concepts
 - > Series: A named column of data with an index
 - > Indexes: The mapping from keys to rows
 - > DataFrame: collection of series with common index
- Dataframe access methods
 - > Filtering on predicates and slicing
 - > df.loc: location by index label
 - > df.iloc: location by integer address
 - groupby & pivot (we will review these again today)

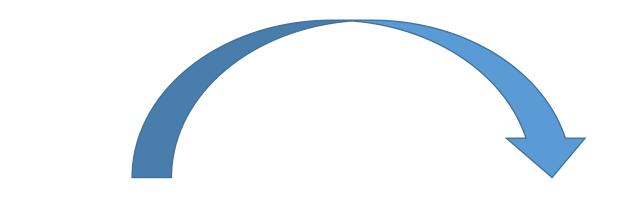
Today



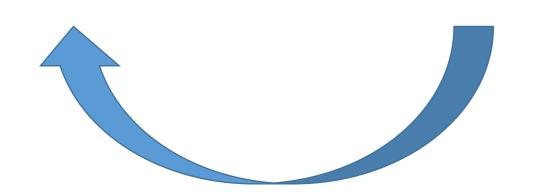
Congratulations!


You have **collected** or **been given** a box of data?

What do you do next?


Data Acquisition

Exploratory Data Analysis

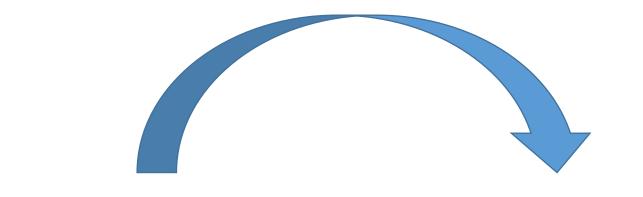

Topics For Lecture Today

- Understanding the Data
 - Data Cleaning
 - Exploratory Data Analysis (EDA)
 - Basic data visualization
- Common Data Anomalies
 - ... and how to fix them

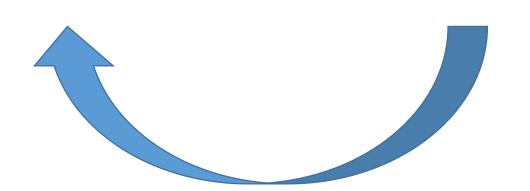
Data Cleaning

Exploratory Data Analysis

Data Cleaning


- The process of transforming raw data to facilitate subsequent analysis
- Data cleaning often addresses
 - structure / formatting
 - missing or corrupted values
 - > unit conversion
 - encoding text as numbers
 - **>** ...
- > Sadly data cleaning is a big part of data science...

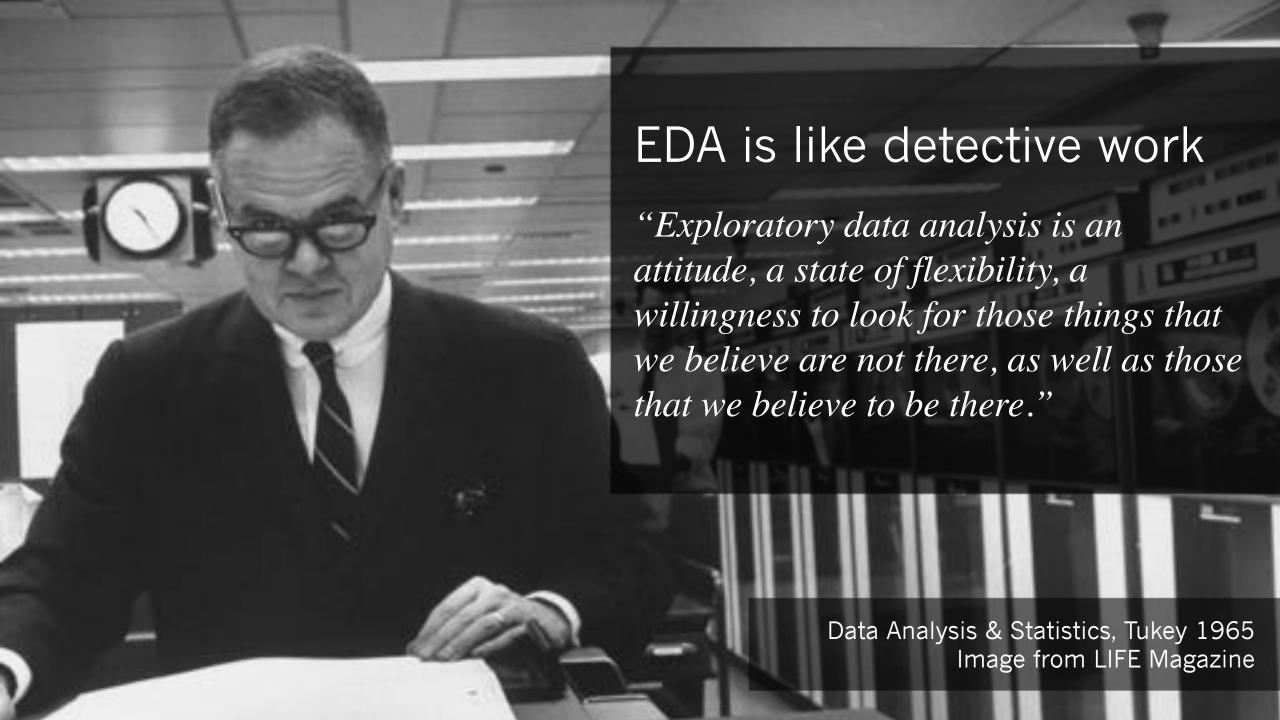
- > Data cleaning often addresses
 - > structure / formatting
 - missing or corrupted values
 - > unit conversion
 - encoding text as numbers
 - **>** ...
- > Sadly data cleaning is a big part of data science...

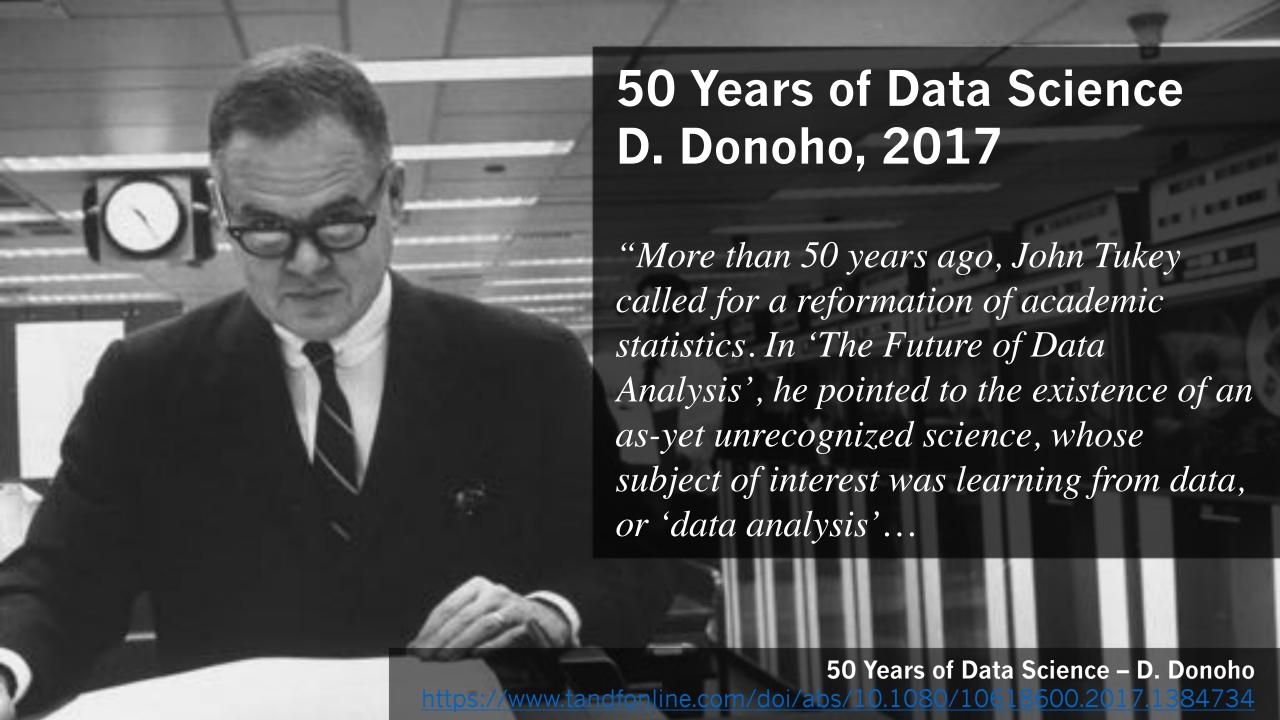


In Data Science, 80% of time spent prepare data, 20% of time spent complain about need for prepare data.

Data Cleaning

Exploratory Data Analysis


Exploratory Data Analysis (EDA)


"Getting to know the data"

The process of transforming, visualizing, and summarizing data to:

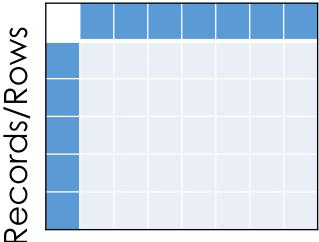
- > Build/confirm understanding of the data and its provenance
- Identify and address potential issues in the data
- Inform the subsequent analysis
- discover potential hypothesis ... (be careful)
- > EDA is an open ended analysis
 - Be willing to find something surprising

What should we look for?

Key Data Properties to Consider in EDA

- > Structure -- the "shape" of a data file
- > Granularity -- how fine/coarse is each datum
- > Scope -- how (in)complete is the data
- > Temporality -- how is the data situated in time
- > Faithfulness -- how well does the data capture "reality"

Key Data Properties to Consider in EDA


- > Structure -- the "shape" of a data file
- > Granularity -- how fine/coarse is each datum
- > Scope -- how (in) complete is the data
- > Temporality -- how is the data situated in time
- > Faithfulness -- how well does the data capture "reality"

Rectangular Data

We prefer rectangular data for data analysis (why?)

- Regular structures are easy manipulate and analyze
- A big part of data cleaning is about transforming data to be more rectangular

Fields/Attributes/
Features/Columns

Two kinds of rectangular data: *Tables and Matrices* (what are the differences?)

- 1. Tables (a.k.a. data-frames in R/Python and relations in SQL)
 - Named columns with different types
 - > Manipulated using data transformation languages (map, filter, group by, join, ...)

2. Matrices

- Numeric data of the same type
- Manipulated using linear algebra

How are these data files formatted?

Comma and Tab Separated Values Files

- > Tabular data where
 - records are delimited by a newline: "\n", "\r\n"
 - > Fields are delimited by ',' (comma) or '\t' (tab)
- Very Common!
- > Issues?
 - Commas, tabs in records
 - Quoting
 - **>** ...

```
Block_Location
            OFFENSE EVENTOT EVENTTM CVLEGEND
    BLKADDR City
                                  01/01/2018 12:00:00 AM
         CASENO, OFFENSE, EVENTDT, EVENTTM, CVLEGEND, CVDOW, InDbDate, Block Location, BLKADDR, City, Stat
         18000273, VEHICLE STOLEN, 01/01/2018 12:00:00 AM, 20:30, MOTOR VEHICLE THEFT, 1, 01/24/2018
         03:30:18 AM, "1100 PARKER ST
        Berkeley, CA
         (37.859364, -122.288914)",1100 PARKER ST, Berkeley, CA
         17092476,BURGLARY AUTO,12/12/2017 12:00:00 AM,13:30,BURGLARY - VEHICLE,2,01/24/2018
          03:30:17 AM, "2300 LE CONTE AVE
10
       6 Berkeley, CA
11
         (37.874867, -122.263689)",2300 LE CONTE AVE, Berkeley, CA
       8 17092534,BURGLARY AUTO,12/20/2017 12:00:00 AM,05:00,BURGLARY - VEHICLE,3,01/24/2018
12
          03:30:17 AM, "1700 STUART ST
       9 Berkeley, CA
      10 (37.857495, -122.275256)",1700 STUART ST,Berkeley,CA
      11 17091517, THEFT MISD. (UNDER $950),08/01/2017 12:00:00 AM,00:30, LARCENY, 2,01/24/2018
          03:30:11 AM, "1600 CALIFORNIA ST
      12 Berkeley, CA
      13 (37.876791, -122.280472)",1600 CALIFORNIA ST, Berkeley, CA
          17048102, THEFT FROM AUTO, 08/13/2017 12:00:00 AM, 00:40, LARCENY - FROM
```

JavaScript Object Notation (JSON)

```
1 {
2    "field1": "value1",
3    "field2": ["list", "of", "values"],
4    "myfield3": {"is_recursive": true, "a null value": null}
5 }
```

- Widely used file format for nested data
 - Natural maps to python dictionaries (many tools for loading)
 - > Strict formatting "quoting" addresses some issues in CSV/TSV
- > Issues
 - > Each record can have different fields
 - ➤ Nesting means records can contain records → complicated

XML (another kind of nested data)

```
<catalog>
  <plant type='a'>
    <common>Bloodroot</common>
    <botanical>Sanguinaria canadensis/botanical>
    <zone>4</zone>
    <light>Mostly Shady</light>
   <price>2.44</price>
    <availability>03/15/2006</availability>
    <description>
       <color>white</color>
                                        Nested structure
       <petals>true</petals>
    </description>
   <indoor>true</indoor>
  </plant>
```

</catalog>

We will study XML later in the class

Log data

Is this a csv file? tsv?

```
169.237.46.168 - - [26/Jan/2014:10:47:58 -0800] "GET /stat141/Winter04 HTTP/1.1" 301 328 "http://anson.ucdavis.edu/courses/" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0; .NET CLR 1.1.4322)"
```

```
169.237.6.168 - - [8/Jan/2014:10:47:58 -0800] "GET /stat141/Winter04/ HTTP/1.1" 200 2585
"http://anson.ucdavis.edu/courses/" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0; .NET CLR 1.1.4322)"
```

Data can be split across files and reference other data.

Structure: Keys

- Often data will reference other pieces of data
- Primary key: the column or set of columns in a table that determine the values of the remaining columns
 - Primary keys are unique
 - Examples: SSN, ProductIDs, ...
- Foreign keys: the column or sets of columns that reference primary keys in other tables.

Purchases.csv

<u>OrderNum</u>	<u>ProdID</u>	Quantity
1	42	3
1	999	2
2	42	1

Foreign Key

Orders.csv

<u>OrderNum</u>	<u>CustID</u>	Date
1	171345	8/21/2017
2	281139	8/30/2017

Products.csv

<u>ProdID</u>	Cost
42	3.14
999	2.72

Primary Key

Customers.csv

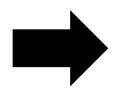
<u>CustID</u>	Addr
171345	Harmon
281139	Main

Merging/joining data across tables

Joining two tables

<u>OrderNum</u>	<u>ProdID</u>	Name
1	42	Gum
2	999	NullFood
2	42	Towel

<u>Orderld</u>	Cust Name	Date
1	Joe	8/21/2017
2	Arthur	8/14/2017


Left "key"	A		Right "key"			
<u>OrderNum</u>	<u>ProdID</u>	Name	Orderld	Cust Name	Date	
1	42	Gum	1	Joe	8/21/2017	
1	42	Cum	2	Arthur	0/14/2017	Drop rows
2	000	NullFood	1	Joo	8/21/2017	— that don't
2	999	NullFood	2	Arthur	8/14/2017	match on
2	12	Towel	1	Joc	0/21/2017	— the key
2	42	Towel	2	Arthur	8/14/2017	,
2 2	999	NullFood Tewel	1	Arthur	8/14/2017 8/21/2017	

<u>OrderNum</u>	<u>ProdID</u>	Name
1	42	Gum
2	999	NullFood
2	42	Towel

<u>Orderld</u>	Cust Name	Date
1	Joe	8/21/2017
2	Arthur	8/14/2017

	Left "key"	\		Right "key"	`		
	<u>OrderNum</u>	<u>ProdID</u>	Name	Orderld	Cust Name	Date	
	1	42	Gum	1	Joe	8/21/2017	
	1	12	Cum	2	A intla in	0/14/2017	Drop rows
	2	200	NullFood	1	Joo	8/21/2017	— that don't
	2	999	NullFood	2	Arthur	8/14/2017	match on
	2	12	Towel	1	Joo	0/21/2017	— the key
	2	42	Towel	2	Arthur	8/14/2017	
`		/	\		/		

<u>OrderNum</u>	<u>ProdID</u>	Name	Orderld	Cust Name	Date
1	42	Gum	1	Joe	8/21/2017
2	999	NullFood	2	Arthur	8/14/2017
2	42	Towel	2	Arthur	8/14/2017

Questions to ask about Structure

- > Are the data in a standard format or encoding?
 - > Tabular data: CSV, TSV, Excel, SQL
 - > Nested data: JSON or XML
- > Are the data organized in "records"?
 - > No: Can we define records by parsing the data?
- > Are the data nested? (records contained within records...)
 - > Yes: Can we reasonably un-nest the data?
- > Does the data reference other data?
 - > Yes: can we join/merge the data
- > What are the fields in each record?
 - How are they encoded? (e.g., strings, numbers, binary, dates ...)
 - What is the type of the data?

Kinds of Data

Note that data categorical data can also be numbers and quantitative data may be stored as strings.

Categorical Data

Quantitative Data

Numbers with meaning ratios or intervals.

Examples:

- Price
- Quantity
- Temperature
- Date
- ...

Ordinal

Categories with orders but no consistent meaning if magnitudes or intervals

Examples:

- Preferences
- Level of education
- •

Nominal

Categories with no specific ordering.

Examples:

- Political Affiliation
- Product Type
- Calld
-

Structure: Field Types

- > Quantitative Data: data with meaningful differences or ratios
 - Continuous: weight, temperature, volume
 - > Discrete: counts, ...
 - Visualization: histograms and box plots
- > Ordinal Data: data where relative order matters
 - > Differences between entries may not be the same
 - > Examples:
 - level of education: [BS, MS, PhD]
 - Preferences: [Dislike, Like, Must Have]
 - Visualization: Bar charts (sorted)
- Nominal Data: data with no numerical meaning
 - > Examples: names, political affiliation, eye color,
 - > It may be encoded as numbers ...
 - Visualization: Bar charts

Quiz

http://bit.ly/ds100-fa18-eda

- > Price in dollars of a product?
 - > (A) Quantitative, (B) Ordinal, (C) Nominal
- > Star Rating on Yelp?
 - > (A) Quantitative, (B) Ordinal, (C) Nominal
- > Date an item was sold?
 - > (A) Quantitative, (B) Ordinal, (C) Nominal
- > What is your Credit Card Number?
 - > (A) Quantitative, (B) Ordinal, (C) Nominal

Quiz

http://bit.ly/ds100-fa18-eda

- > Price in dollars of a product?
 - > (A) Quantitative, (B) Ordinal, (C) Nominal
- > Star Rating on Yelp?
 - > (A) Quantitative, (B) Ordinal, (C) Nominal
- > Date an item was sold?
 - > (A) Quantitative, (B) Ordinal, (C) Nominal
- > What is your Credit Card Number?
 - > (A) Quantitative, (B) Ordinal, (C) Nominal

Key Data Properties to Consider in EDA

- > Structure -- the "shape" of a data file
- > Granularity -- how fine/coarse is each datum
- > Scope -- how (in) complete is the data
- > Temporality -- how is the data situated in time
- > Faithfulness -- how well does the data capture "reality"

Key Data Properties to Consider in EDA

- > Structure -- the "shape" of a data file
- > Granularity -- how fine/coarse is each datum
- > Scope -- how (in)complete is the data
- > Temporality -- how is the data situated in time
- > Faithfulness -- how well does the data capture "reality"

Granularity

- What does each record represent?
 - Examples: a purchase, a person, a group of users
- > Do all records capture granularity at the same level?
 - Some data will include summaries as records
- > If the data are coarse how was it aggregated?
 - Sampling, averaging, ...
- What kinds of aggregation is possible/desirable?
 - From individual people to demographic groups?
 - From individual events to totals across time or regions?
 - Hierarchies (city/county/state, second/minute/hour/days)
- Understanding and manipulating granularity can help reveal patterns.

Purchases.csv

<u>OrderNum</u>	<u>ProdID</u>	Quantity
1	42	3
1	999	2
2	42	1

Orders.csv

<u>OrderNum</u>	<u>CustID</u>	Date
1	171345	8/21/2017
2	281139	8/30/2017

Products.csv

<u>ProdID</u>	Cost
42	3.14
999	2.72

Customers.csv

<u>CustID</u>	Addr
171345	Harmon
281139	Main

Granularity and Keys

- ➤ The primary key defines what the record represents → Granularity
- What is the granularity of these example tables?
 - Purchases.csv: PK=(OrderNum + ProdID)
 - → Each Item in an order
 - ➤ Orders.csv: PK = OrderNum → an order
- How might we adjust the granularity?
 - Aggregation: count, mean, median, var, groupby, pivot ...

Reviewing Group By and Pivot

Key Data

- A 3
- B 1
- C 4
- A 1
- B 5
- C 9
- A 2
- B 6
- C 5

Key Data

B 1

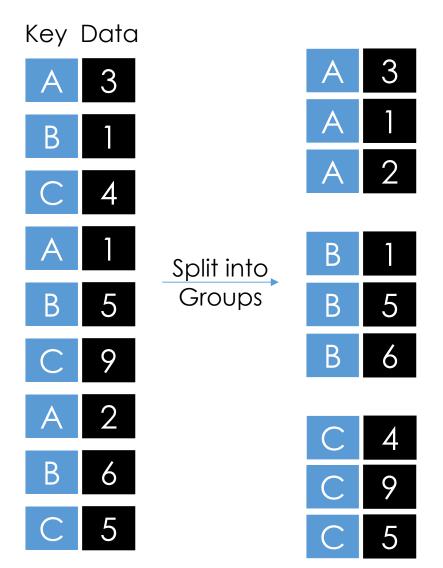
C 4

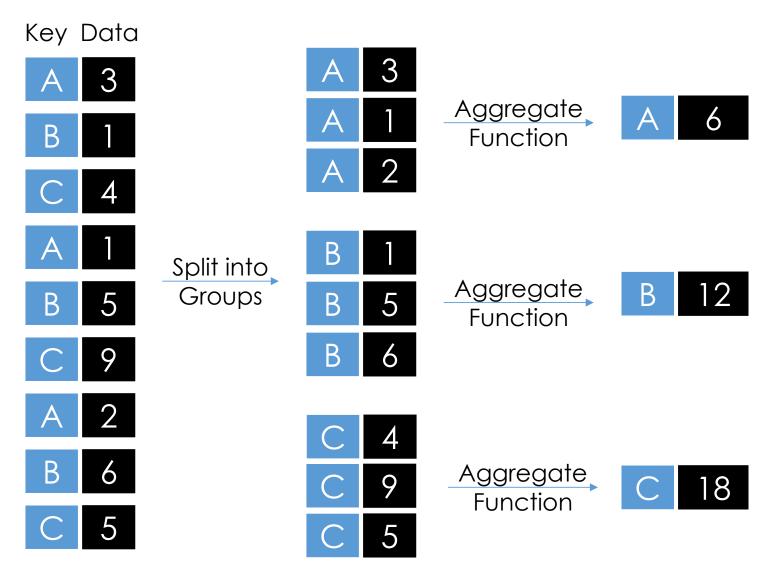
A 1

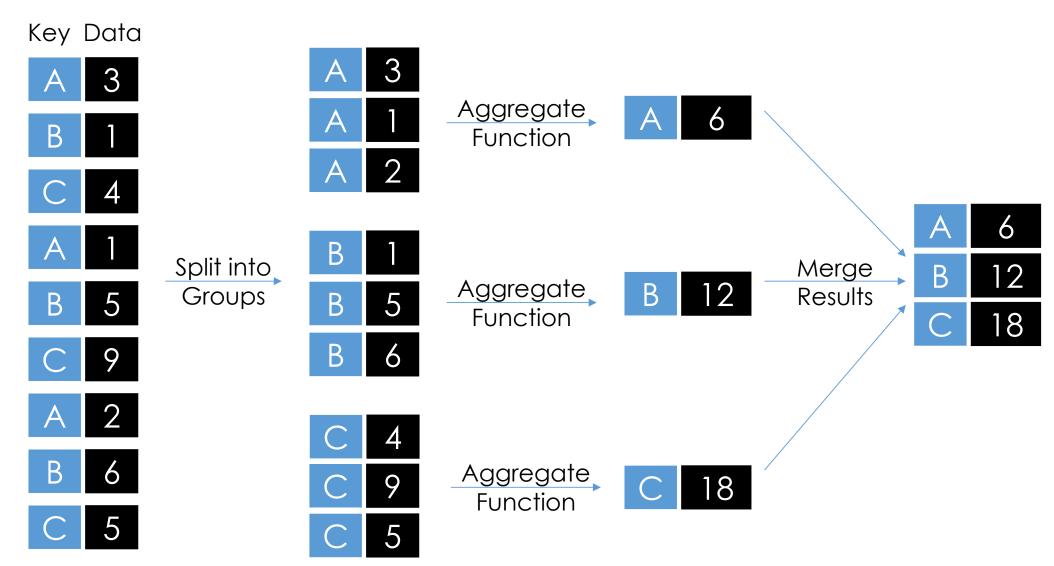
B 5

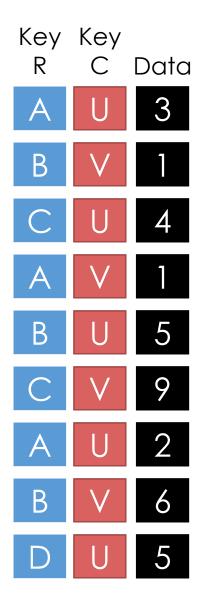
C 9

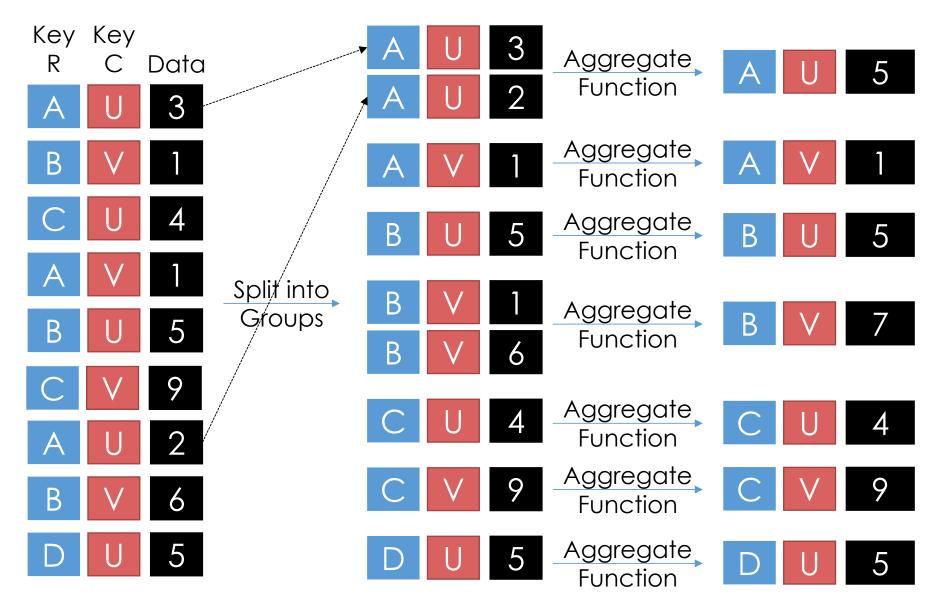
A 2

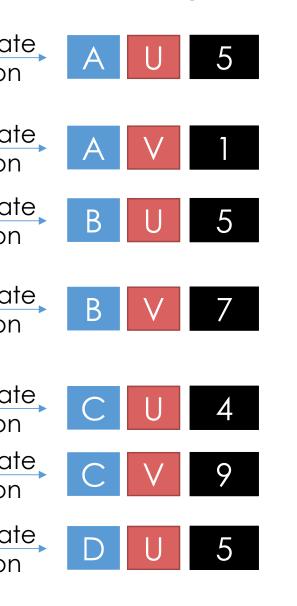

B 6

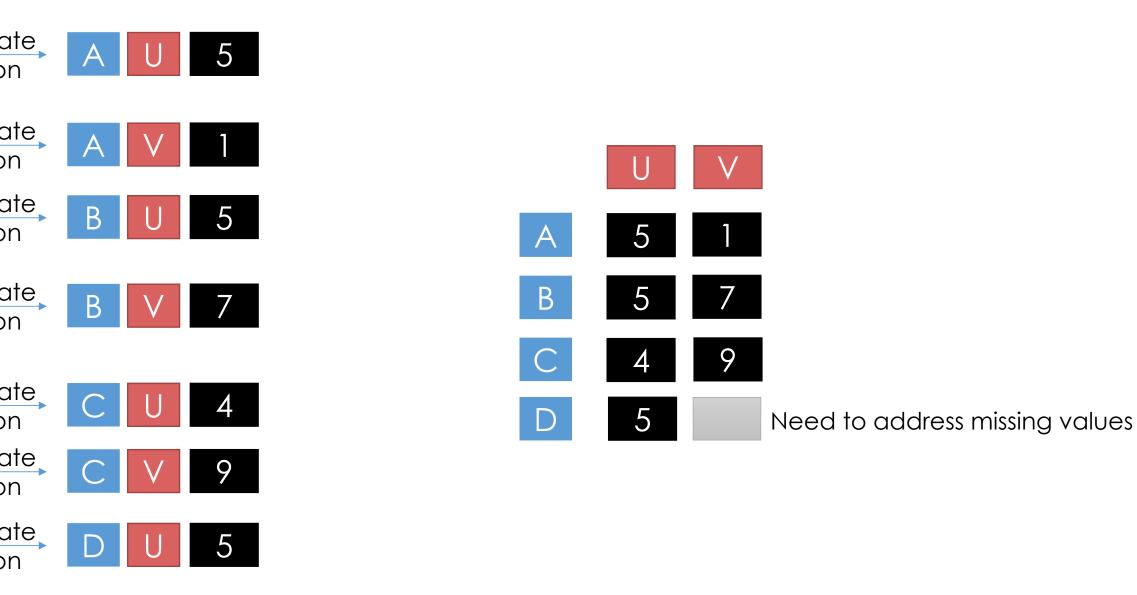

C 5


A 3


A 1


A 2





http://abcnews.go.com/Lifestyle/silly-baby-panda-falls-flat-face-public-debut/story?id=42481478

Key Data Properties to Consider in EDA

- > Structure -- the "shape" of a data file
- > Granularity -- how fine/coarse is each datum
- > Scope -- how (in)complete is the data
- > Temporality -- how is the data situated in time
- > Faithfulness -- how well does the data capture "reality"

Key Data Properties to Consider in EDA

- > Structure -- the "shape" of a data file
- > Granularity -- how fine/coarse is each datum
- > Scope -- how (in)complete is the data
- > Temporality -- how is the data situated in time
- > Faithfulness -- how well does the data capture "reality"

Scope

- > Does my data cover my area of interest?
 - Example: I am interested in studying crime in California but I only have Berkeley crime data.
- > Is my data too expansive?
 - > **Example:** I am interested in student grades for DS100 but have student grades for all statistics classes.
 - > **Solution:** Filtering > Implications on sample?
 - > If the data is a sample I may have poor coverage after filtering ...
- > Does my data cover the right time frame?
 - More on this in temporality ...

To be continued ...

In the next lecture